scholarly journals Past climate changes, population dynamics and the origin of Bison in Europe

2016 ◽  
Author(s):  
Diyendo Massilani ◽  
Silvia Guimaraes ◽  
Jean-Philip Brugal ◽  
E. Andrew Bennett ◽  
Malgorzata Tokarska ◽  
...  

AbstractClimatic and environmental fluctuations as well as anthropogenic pressure have led to the extinction of much of Europe’s megafauna. Here we show that the emblematic European bison has experienced several waves of population expansion, contraction and extinction during the last 50,000 years in Europe, culminating in a major reduction of genetic diversity during the Holocene. Fifty-seven complete and partial ancient mitogenomes from throughout Europe, the Caucausus and Siberia reveal that three populations of wisent (Bison bonasus) and steppe bison (B. priscus) alternated in Western Europe correlating with climate-induced environmental changes. The Late Pleistocene European steppe bison originated from northern Eurasia whereas the modern wisent population emerged from a refuge in the southern Caucasus after the last glacial maximum. A population overlap in a transition period is reflected in ca. 36,000 year-old paintings in the French Chauvet cave. Bayesian analyses of these complete ancient mitogenomes yielded new dates of the various branching events during the evolution of Bison and its radiation with Bos that lead us to propose that the genetic affiliation between the wisent and cattle mitogenomes result from incomplete lineage sorting rather than post-speciation gene flow.SignificanceClimatic fluctuations during the Pleistocene had a major impact on the environment and led to multiple megafaunal extinctions. Through ancient DNA analyses we decipher these processes for one of the largest megafauna of Eurasia, the bison. We show that Western Europe was successively populated during the Late Pleistocene by three different bison clades or species originating from the Caucasus and North-Eastern Europe that can be correlated to major climatic fluctuations and environmental changes. Aurignacian cave artists were witnesses to the first replacement of bison species ~35,000 years ago. All of these populations went extinct except for one that survived into the Holocene where it experienced severe reductions of its genetic diversity due to anthropogenic pressure.

2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Alba Rey-Iglesia ◽  
Adrian M. Lister ◽  
Paula F. Campos ◽  
Selina Brace ◽  
Valeria Mattiangeli ◽  
...  

Late Quaternary climatic fluctuations in the Northern Hemisphere had drastic effects on large mammal species, leading to the extinction of a substantial number of them. The giant deer ( Megaloceros giganteus ) was one of the species that became extinct in the Holocene, around 7660 calendar years before present. In the Late Pleistocene, the species ranged from western Europe to central Asia. However, during the Holocene, its range contracted to eastern Europe and western Siberia, where the last populations of the species occurred. Here, we generated 35 Late Pleistocene and Holocene giant deer mitogenomes to explore the genetics of the demise of this iconic species. Bayesian phylogenetic analyses of the mitogenomes suggested five main clades for the species: three pre-Last Glacial Maximum clades that did not appear in the post-Last Glacial Maximum genetic pool, and two clades that showed continuity into the Holocene. Our study also identified a decrease in genetic diversity starting in Marine Isotope Stage 3 and accelerating during the Last Glacial Maximum. This reduction in genetic diversity during the Last Glacial Maximum, coupled with a major contraction of fossil occurrences, suggests that climate was a major driver in the dynamics of the giant deer.


Author(s):  
Tony Hallam

We saw in Chapters 5 and 7 that the Quaternary was a time of low extinction rates despite a succession of strong environmental changes induced ultimately by climate. This began to change from a few tens of thousands of years ago with the arrival on our planet of Homo sapiens sapiens, which can be translated from the Latin as the rather smug ‘ultrawise Man’. It is widely accepted today that the Earth is undergoing a loss of species on a scale that would certainly rank in geological terms as a catastrophe, and has indeed, been dubbed ‘the sixth mass extinction’. Although the disturbance to the biosphere being created in modern times is more or less entirely attributable to human activity, we must use the best information available from historical, archaeological, and geological records to attempt to determine just when it began. Towards the end of the last ice age, known in Europe as the Würm and in North America as the Wisconsin, the continents were much richer in large mammals than today: for example, there were mammoths, mastodonts, and giant ground sloths in the Americas; woolly mammoths, elephants, rhinos, giant deer, bison, and hippos in northern Eurasia; and giant marsupials in Australia. Outside Africa most genera of large mammals, defined as exceeding 44 kilograms adult weight, disappeared within the past 100,000 years, an increasing number becoming extinct towards the end of that period. This indicates that there was a significant extinction event near the end of the Pleistocene. This event was not simultaneous across the world, however: it took place later in the Americas than Australia, and Africa and Asia have suffered fewer extinctions than other continents. There are three reasons for citing humans as the main reason for the late Pleistocene extinctions. First, the extinctions follow the appearance of humans in various parts of the world. Very few of the megafaunal extinctions that took place in the late Pleistocene can definitely be shown to pre-date the arrival of humans. There has, on the other hand, been a sequence of extinctions following human dispersal, culminating most recently on oceanic islands. Second, it was generally only large mammals that became extinct.


2001 ◽  
Vol 56 (3) ◽  
pp. 349-356 ◽  
Author(s):  
Denis-Didier Rousseau ◽  
Natalia Gerasimenko ◽  
Zhanna Matviischina ◽  
George Kukla

AbstractThe Vyazivok loess sequence from the Dnieper Plain, Ukraine, documents regional environmental changes during the late Pleistocene and Holocene. Pedological and palynological analyses and low-field magnetic susceptibility document changes from dense temperate forest during the last interglacial maximum to open, harsh, loess–steppe during the latest Pleistocene. The Vyazivok section overlies hillwash derived from a lower Pleistocene terrace and consists of two stratified soil complexes (Kaydaky and Pryluky; marine isotope stage [MIS] 5 equivalent) separated by a layer of eolian dust (Tyasmyn silt). The lower soils in both complexes formed within forest. These soils are overlain by the Uday (MIS4) and Bug (MIS2) loess units, which are separated by boreal soils of the Vytachiv (MIS3) complex. The coldest conditions within the record occurred in the youngest loess. Holocene soils cap the Bug loess. The Vyazivok section shows remarkable similarities with other classical loess sequences in western Europe, the Czech Republic, and Austria. The Kaydaky, Pryluky, and Vytachiv deposits, correlate with the PKIII, PKII, and PKI soil complexes, respectively, of the Czech Republic. The Tyasmyn and Prylyky silt layers correspond to marker horizons from central Europe.


2019 ◽  
Vol 97 (4) ◽  
pp. 588-608 ◽  
Author(s):  
Grecia Montalvo-Fernández ◽  
Lorenzo Felipe Sánchez-Teyer ◽  
Germán Carnevali ◽  
Andrew P. Vovides ◽  
Ricardo Gaytán-Legaria ◽  
...  

Background: Glacial periods during the Pleistocene have been hypothesized to have greatly influenced geographical patterns of genetic structure and demography of many tropical species. The Glacial Refugium Hypothesis proposes that, during cold, dry glacial periods, populations of moisture-affinities tropical species were restricted to sheltered, humid areas and that, during warmer and more humid interglacial periods, these populations expanded. Some mountain regions in the tropics acted as refugia during the cold, dry periods of the Pleistocene for several temperate forest taxa, which recolonized the humid areas farther north during the interglacial periods.Questions: (1) Did Late Pleistocene-Holocene climate changes affect the historical demophraphy of Zamia prasina? (2) Does the historical distribution of Zamia prasina agree with the Glacial Refugium Hypothesis?Study species: Zamia prasina W.Bull. (Zamiaceae), the only cycad native to the Yucatan Peninsula Biotic Province (YPBP). Methods: Five individuals were collected in 23 populations and characterized using two DNA regions: plastid atpF-atpH, and nuclear ITS2. Genetic diversity, phylogeographic structure, historical demography, and potential distributions were assessed. Results: Our results showed moderately high genetic diversity and low, but significant, phylogeographic structure. Two genetic groups were identified, one in the eastern part of the Peninsula, the other in the western. The changes in historical demography suggest that Z. prasina experienced a population expansion following the warm conditions of the Holocene.Conclusions: The population dynamics of Zamia prasina are in accordance with the Glacial Refugium Hypothesis.


2011 ◽  
Vol 6 (6) ◽  
pp. 1044-1053 ◽  
Author(s):  
Vaida Tubelyte ◽  
Saulius Švažas ◽  
Aniolas Sruoga ◽  
Dalius Butkauskas ◽  
Algimantas Paulauskas ◽  
...  

AbstractThe tufted duck (Aythya fuligula, Anatidae) is widespread in the Palaearctic across Northern Eurasia. Birds breeding in Northern and Eastern Europe are highly migratory, while populations from Western Europe are partially migratory or resident. The aim of this study is to explore genetic variation within and between ducks breeding in Latvia and migrants sampled in North West Russia and Belarus. The technique of random amplified polymorphic DNA was applied using five random primers (ol-1, ol-9-12). Genetic variability was measured for all tufted ducks investigated and for different sub-populations from various regions. Individual genetic structure and genetic variability was higher in ducks collected from Latvia. Gene diversity of amplified DNA bands in birds of Latvian origin was 24% with 80% polymorphism. Means of gene diversity and polymorphism for tufted ducks sampled in other countries varied from 12 to 14% and from 27 to 40%, respectively. A high number of unique bands characterized ducks breeding in Latvia. The oligonucleotide primers used in this study were suitable to analyze differences among tufted ducks of different origin. Possible explanations for the variation observed among the studied ducks are discussed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhi Wang ◽  
Caihong Zhong ◽  
Dawei Li ◽  
Chunlin Yan ◽  
Xiaohong Yao ◽  
...  

Abstract Background Plant phylogeographic studies of species in subtropical China have mainly focused on rare and endangered species, whereas few studies have been conducted on taxa with relatively wide distribution, especially polyploid species. We investigated the cytotype and haplotype distribution pattern of the Actinidia chinensis complex, a widespread geographically woody liana with variable ploidy in subtropical China comprising two varieties, with three chloroplast fragments DNA (ndhF-rpl132, rps16-trnQ and trnE-trnT). Macroevolutionary, microevolutionary and niche modeling tools were also combined to disentangle the origin and the demographic history of the species or cytotypes. Results The ploidy levels of 3338 individuals from 128 populations sampled throughout the species distribution range were estimated with flow cytometry. The widespread cytotypes were diploids followed by tetraploids and hexaploids, whereas triploids and octoploids occurred in a few populations. Thirty-one chloroplast haplotypes were detected. The genetic diversity and genetic structure were found to be high between varieties (or ploidy races) chinensis and deliciosa. Our results revealed that these two varieties inhabit significantly different climatic niche spaces. Ecological niche models (ENMs) indicate that all varieties’ ranges contracted during the Last Inter Glacial (LIG), and expanded eastward or northward during the Last Glacial Maximum (LGM). Conclusions Pliocene and Plio-Pleistocene climatic fluctuations and vicariance appear to have played key roles in shaping current population structure and historical demography in the A. chinensis complex. The polyploidization process also appears to have played an important role in the historical demography of the complex through improving their adaptability to environmental changes.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 683
Author(s):  
Marc Herremans ◽  
Karin Gielen ◽  
Jos Van Kerckhoven ◽  
Pieter Vanormelingen ◽  
Wim Veraghtert ◽  
...  

The peacock butterfly is abundant and widespread in Europe. It is generally believed to be univoltine (one generation per year): adults born in summer overwinter and reappear again in spring to reproduce. However, recent flight patterns in western Europe mostly show three peaks during the year: a first one in spring (overwintering butterflies), a second one in early summer (offspring of the spring generation), and a third one in autumn. It was thus far unclear whether this autumn flight peak was a second new generation or consisted of butterflies flying again in autumn after a summer rest (aestivation). The life cycle of one of Europe’s most common butterflies is therefore still surprisingly inadequately understood. We used hundreds of thousands of observations and thousands of pictures submitted by naturalists from the public to the online portal observation.orgin Belgium and analyzed relations between flight patterns, condition (wear), reproductive cycles, peak abundances, and phenology to clarify the current life history. We demonstrate that peacocks have shifted towards two new generations per year in recent decades. Mass citizen science data in online portals has become increasingly important in tracking the response of biodiversity to rapid environmental changes such as climate change.


1995 ◽  
Vol 43 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Eiliv Larsen ◽  
Hans Petter Sejrup ◽  
Sigfus J. Johnsen ◽  
Karen Luise Knudsen

AbstractThe climatic evolution during the Eemian and the Holocene in western Europe is compared with the sea-surface conditions in the Norwegian Sea and with the oxygen-isotope-derived paleotemperature signal in the GRIP and Renland ice cores from Greenland. The records show a warm phase (ca. 3000 yr long) early in the Eemian (substage 5e). This suggests that the Greenland ice sheet, in general, recorded the climate in the region during this time. Rapid fluctuations during late stage 6 and late substage 5e in the GRIP ice core apparently are not recorded in the climatic proxies from western Europe and the Norwegian Sea. This may be due to low resolution in the terrestrial and marine records and/or long response time of the biotic changes. The early Holocene climatic optimum recorded in the terrestrial and marine records in the Norwegian Sea-NW European region is not found in the Summit (GRIP and GISP2) ice cores. However, this warm phase is recorded in the Renland ice core. Due to the proximity of Renland to the Norwegian Sea, this area is probably more influenced by changes in polar front positions which may partly explain this discrepancy. A reduction in the elevation at Summit during the Holocene may, however, be just as important. The high-amplitude shifts during substage 5e in the GRIP core could be due to Atlantic water oscillating closer to, and also reaching, the coast of East Greenland. During the Holocene, Atlantic water was generally located farther east in the Norwegian Sea than during the Eemian.


Sign in / Sign up

Export Citation Format

Share Document