scholarly journals Privatization of a breeding resource by the burying beetleNicrophorus vespilloidesis associated with shifts in bacterial communities

2016 ◽  
Author(s):  
Ana Duarte ◽  
Martin Welch ◽  
Josef Wagner ◽  
Rebecca M. Kilner

AbstractIt is still poorly understood how animal behaviour shapes bacterial communities and their evolution. We use burying beetles,Nicrophorus vespilloides, to investigate how animal behaviour impacts the assembly of bacterial communities. Burying beetles use small vertebrate carcasses as breeding resources, which they roll into a ball, smear with antimicrobial exudates and bury. Using high-throughput sequencing we characterize bacterial communities on fresh mouse carcasses, aged carcasses prepared by beetles, and aged carcasses that were manually buried. The long-standing hypothesis that burying beetles ‘clean’ the carcass from bacteria is refuted, as we found higher loads of bacterial DNA in beetle-prepared carcasses. Beetle-prepared carcasses were similar to fresh carcasses in terms of species richness and diversity. Beetle-prepared carcasses distinguish themselves from manually buried carcasses by the reduction of groups such as Proteobacteria and increase of groups such as Flavobacteriales and Clostridiales. Network analysis suggests that, despite differences in membership, network topology is similar between fresh and beetle-prepared carcasses. We then examined the bacterial communities in guts and exudates of breeding and non-breeding beetles. Breeding was associated with higher diversity and species richness. Breeding beetles exhibited several bacterial groups in common with their breeding resource, but that association is likely to disappear after breeding.

2020 ◽  
Vol 66 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Jorge Cordero ◽  
J. Renato de Freitas ◽  
James J. Germida

Rhizosphere and root associated bacteria are key components of plant microbiomes and influence crop production. In sustainable agriculture, it is important to investigate bacteria diversity in various plant species and how edaphic factors influence the bacterial microbiome. In this study, we used high-throughput sequencing to assess bacterial communities associated with the rhizosphere and root interior of canola, wheat, field pea, and lentil grown at four locations in Saskatchewan, Canada. Rhizosphere bacteria communities exhibited distinct profiles among crops and sampling locations. However, each crop was associated with distinct root endophytic bacterial communities, suggesting that crop species may influence the selection of root bacterial microbiome. Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla in the root interior, whereas Gemmatimonadetes, Firmicutes, and Acidobacteria were prevalent in the rhizosphere soil. Pseudomonas and Stenotrophomonas were predominant in the rhizosphere and root interior, whereas Acinetobacter, Arthrobacter, Rhizobium, Streptomyces, Variovorax, and Xanthomonas were dominant in the root interior of all crops. The relative abundance of specific bacterial groups in the rhizosphere correlated with soil pH and silt and organic matter contents; however, there was no correlation between root endophytes and analyzed soil properties. These results suggest that the root microbiome may be modulated by plant factors rather than soil characteristics.


2019 ◽  
Author(s):  
Syuan-Jyun Sun ◽  
Rebecca M. Kilner

AbstractSymbiotic organisms adapt to one another but the extent of co-adaptation commonly varies among pairs of the same symbiotic species drawn from different populations. Here we identify some ecological causes of such differences between populations. We analysed the extent of local co-adaptation between burying beetles Nicrophorus vespilloides and their phoretic mites Poecilochirus carabi in Gamlingay and Waresley Woods, in Cambridgeshire, UK. Burying beetles transport mites to small vertebrate carrion upon which they both reproduce. We conducted reciprocal transplant experiments to test for evidence of local co-adaptation during reproduction. We found variation in the extent of local co-adaptation that was explained by cryptic host specialisation within P. carabi mites. P. carabi is a species complex, within which races of mites are specialised to associate with different species of burying beetle. We found that N. vespilloides from Gamlingay Wood carries a mixture of mite races, from each of the four Nicrophorus species that inhabits this wood. This mixture of races makes P.carabi harmful to Gamlingay N. vespilloides: together, they reduce beetle reproductive success. Experimentally purifying mites, so that Gamlingay N. vespilloides is associated only with the vespilloides mite race, improves beetle reproductive success. Waresley N. vespilloides, by contrast, carry a near pure race of vespilloides mites, which cause negligible damage to Waresley N. vespilloides reproductive success. This is probably because Waresley Wood harbours only two burying beetle species, which differ markedly in their reproductive biology. Cryptic host specialisation with P. carabi mites, combined with differences in the Nicrophorus guild between Gamlingay and Waresley Woods, therefore explain population differences in the extent of local adaptation between N. vespilloides and P. carabi.


Author(s):  
Rose Chinly Mae H. Ortega ◽  
Sharon Rose M. Tabugo ◽  
Joey Genevieve T. Martinez ◽  
Chinee S. Padasas ◽  
Marilen P. Balolong ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1461
Author(s):  
Hao Fang ◽  
Nan Ye ◽  
Kailong Huang ◽  
Junnan Yu ◽  
Shuai Zhang

Shrimp aquaculture environments are a natural reservoir of multiple antibiotic resistance genes (ARGs) due to the overuse of antibiotics. Nowadays, the prevalence of these kinds of emerging contaminants in shrimp aquaculture environments is still unclear. In this study, high-throughput sequencing techniques were used to analyze the distribution of ARGs and mobile genetic elements (MGEs), bacterial communities, and their correlations in water and sediment samples in two types of typical shrimp (Procambarus clarkii and Macrobrachium rosenbergii) freshwater aquaculture environments. A total of 318 ARG subtypes within 19 ARG types were detected in all the samples. The biodiversity and relative abundance of ARGs in sediment samples showed much higher levels compared to water samples from all ponds in the study area. Bacitracin (17.44–82.82%) and multidrug (8.57–49.70%) were dominant ARG types in P. clarkii ponds, while sulfonamide (26.33–39.59%) and bacitracin (12.75–37.11%) were dominant ARG types in M. rosenbergii ponds. Network analysis underlined the complex co-occurrence patterns between bacterial communities and ARGs. Proteobacteria, Cyanobacteria, and Actinobacteria exhibited a high abundance in all samples, in which C39 (OTU25355) and Hydrogenophaga (OTU162961) played important roles in the dissemination of and variation in ARGs based on their strong connections between ARGs and bacterial communities. Furthermore, pathogens (e.g., Aeromonadaceae (OTU195200) and Microbacteriaceae (OTU16033)), which were potential hosts for various ARGs, may accelerate the propagation of ARGs and be harmful to human health via horizontal gene transfer mediated by MGEs. Variation partitioning analysis further confirmed that MGEs were the most crucial contributor (74.76%) driving the resistome alteration. This study may help us to understand the non-ignorable correlations among ARGs, bacterial diversity, and MGEs in the shrimp freshwater aquaculture environments.


2019 ◽  
Vol 65 (3) ◽  
pp. 201-213
Author(s):  
Yang Li ◽  
Zhaojun Wu ◽  
Xingchen Dong ◽  
Dongmei Wang ◽  
Huizhen Qiu ◽  
...  

Ecological restoration technologies applied to tailings can influence the associated bacterial communities. However, it is unknown if the shifts in these bacterial communities are caused by increased organic carbon. Glucose-induced respiration and high-throughput sequencing were used to assess the microbial activity and bacterial communities, respectively. Glucose addition increased the microbial activity, and glucose + ammonium nitrate addition resulted in slightly higher CO2 emission than did glucose addition alone, suggesting that carbon and nitrogen limited microbial community growth. In neutral pH tailings, the bacterial taxa that increased by glucose addition were assigned to the phyla Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Planctomycetes. However, the bacterial taxa that increased by glucose addition in acidic tailings only belonged to the phylum Actinobacteria (maximum increase of 43.78%). In addition, the abundances of the total nitrogen-fixing genera and of the genus Arthrobacter (representing approximately 97.89% of the total nitrogen-fixing genera) increased by glucose addition in acidic tailings (maximum increase of 46.98%). In contrast, the relative abundances of the total iron- and (or) sulfur-oxidizing bacteria decreased (maximum decrease of 10.41%) in response to the addition of glucose. These findings indicate that the addition of organic carbon is beneficial to the development of bacterial communities in mine tailings.


2019 ◽  
Author(s):  
Syuan-Jyun Sun ◽  
Andrew M. Catherall ◽  
Sonia Pascoal ◽  
Benjamin J. M. Jarrett ◽  
Sara E. Miller ◽  
...  

AbstractModels of ‘plasticity-first’ evolution are attractive because they explain the rapid evolution of new complex adaptations. Nevertheless, it is unclear whether plasticity can still facilitate rapid evolution when diverging populations are connected by gene flow. Here we show how plasticity has generated adaptive divergence in fecundity in wild populations of burying beetlesNicrophorus vespilloides, which are still connected by gene flow, which occupy distinct Cambridgeshire woodlands that are just 2.5km apart and which diverged from a common ancestral population c. 1000-4000 years ago. We show that adaptive divergence is duetothe coupling of an evolved increase in the elevation of the reaction norm linking clutch size to carrion size (i.e. genetic accommodation) with plastic secondary elimination of surplus offspring. Working in combination, these two processes have facilitated rapid adaptation to fine-scale environmental differences, despite ongoing gene flow.


2021 ◽  
Vol 118 (48) ◽  
pp. e2102450118
Author(s):  
Ana Duarte ◽  
Darren Rebar ◽  
Allysa C. Hallett ◽  
Benjamin J. M. Jarrett ◽  
Rebecca M. Kilner

Parental care can be partitioned into traits that involve direct engagement with offspring and traits that are expressed as an extended phenotype and influence the developmental environment, such as constructing a nursery. Here, we use experimental evolution to test whether parents can evolve modifications in nursery construction when they are experimentally prevented from supplying care directly to offspring. We exposed replicate experimental populations of burying beetles (Nicrophorus vespilloides) to different regimes of posthatching care by allowing larvae to develop in the presence (Full Care) or absence of parents (No Care). After only 13 generations of experimental evolution, we found an adaptive evolutionary increase in the pace at which parents in the No Care populations converted a dead body into a carrion nest for larvae. Cross-fostering experiments further revealed that No Care larvae performed better on a carrion nest prepared by No Care parents than did Full Care larvae. We conclude that parents construct the nursery environment in relation to their effectiveness at supplying care directly, after offspring are born. When direct care is prevented entirely, they evolve to make compensatory adjustments to the nursery in which their young will develop. The rapid evolutionary change observed in our experiments suggests there is considerable standing genetic variation for parental care traits in natural burying beetle populations—for reasons that remain unclear.


Sign in / Sign up

Export Citation Format

Share Document