scholarly journals Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

2016 ◽  
Author(s):  
Stephen R. Doyle ◽  
Catherine Bourguinat ◽  
Hugues C. Nana-Djeunga ◽  
Jonas A. Kengne-Ouafo ◽  
Sébastien D.S. Pion ◽  
...  

ABSTRACTBackgroundTreatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana - exposed to more than a decade of regular ivermectin treatment - have raised concern that sub-optimal responses to ivermectin’s anti-fecundity effect are becoming more frequent and may spread.Methodology/Principal FindingsPooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.Conclusions/SignificanceThis study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait in which identical or related molecular pathways but not necessarily individual genes likely determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations.Author summaryOnchocerciasis is a human parasitic disease endemic across large areas of Sub-Saharan Africa, where more that 99% of the estimated 100 million people globally at-risk live. The microfilarial stage of Onchocerca volvulus causes pathologies ranging from mild itching to visual impairment and ultimately, irreversible blindness. Mass administration of ivermectin kills microfilariae and has an anti-fecundity effect on adult worms by temporarily inhibiting the development in utero and/or release into the skin of new microfilariae, thereby reducing morbidity and transmission. Phenotypic and genetic changes in some parasite populations that have undergone multiple ivermectin treatments in Cameroon and Ghana have raised concern that sub-optimal response to ivermectin’s anti-fecundity effect may increase in frequency, reducing the impact of ivermectin-based control measures. We used next generation sequencing of small pools of parasites to define genome-wide genetic differences between phenotypically characterised good and sub-optimal responder parasites from Cameroon and Ghana, and identified multiple genomic regions differentiating the response types. These regions were largely different between parasites from both countries but revealed common molecular pathways that might be involved in determining the extent of response to ivermectin’s anti-fecundity effect. These data reveal a more complex than previously described pattern of genetic diversity among O. volvulus populations that differ in their geography and response to ivermectin treatment.

2020 ◽  
Author(s):  
Hao Bai ◽  
Yanghua He ◽  
Yi Ding ◽  
Huanmin Zhang ◽  
Jilan Chen ◽  
...  

Abstract Background: Marek’s disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic infectious disease that threatens the poultry industry. Copy number variation (CNV) has been examined in many species and is recognized as a major source of genetic variation that directly contributes to phenotypic variation such as resistance to infectious diseases. Two highly inbred chicken lines 63 (MD-resistant) and 72 (MD-susceptible), as well as their F1 generation and six recombinant congenic strains (RCSs) with varied susceptibility to MD, are considered as ideal models to identify the complex mechanisms of genetic and molecular resistance to MD.Results: In the present study, to unravel the potential genetic mechanisms underlying resistance to MD, we performed a genome-wide CNV detection using next generation sequencing on the inbred chicken lines with the assistance of CNVnator. As a result, a total of 1,649 CNV regions (CNVRs) were successfully identified after merging all the nine datasets, of which 90 CNVRs were overlapped across all the chicken lines. Within these shared regions, 1,360 harbored genes were identified. In addition, 55 and 44 CNVRs with 62 and 57 harbored genes were specifically identified in line 63 and 72, respectively. Bioinformatics analysis showed that the nearby genes were significantly enriched in 36 GO terms and 6 KEGG pathways including JAK/STAT signaling pathway. Ten CNVRs (nine deletions and one duplication) involved in 10 disease-related genes were selected for validation by using qRT-PCR, all of which were successfully confirmed. Finally, qRT-PCR was also used to validate two deletion events in line 72 that were definitely normal in line 63. One high-confidence gene, IRF2 was identified as the most promising candidate gene underlying resistance and susceptibility to MD in view of its function and overlaps with data from previous study.Conclusions: Our findings provide valuable insights for understanding the genetic mechanism of resistance to MD and the identified gene and pathway could be considered as the subject of further functional characterization.


2017 ◽  
Author(s):  
Claire Marchal ◽  
Takayo Sasaki ◽  
Daniel Vera ◽  
Korey Wilson ◽  
Jiao Sima ◽  
...  

ABSTRACTCycling cells duplicate their DNA content during S phase, following a defined program called replication timing (RT). Early and late replicating regions differ in terms of mutation rates, transcriptional activity, chromatin marks and sub-nuclear position. Moreover, RT is regulated during development and is altered in disease. Exploring mechanisms linking RT to other cellular processes in normal and diseased cells will be facilitated by rapid and robust methods with which to measure RT genome wide. Here, we describe a rapid, robust and relatively inexpensive protocol to analyze genome-wide RT by next-generation sequencing (NGS). This protocol yields highly reproducible results across laboratories and platforms. We also provide computational pipelines for analysis, parsing phased genomes using single nucleotide polymorphisms (SNP) for analyzing RT allelic asynchrony, and for direct comparison to Repli-chip data obtained by analyzing nascent DNA by microarrays.


2019 ◽  
Author(s):  
Xinyue You ◽  
Suresh Thiruppathi ◽  
Weiying Liu ◽  
Yiyi Cao ◽  
Mikihiko Naito ◽  
...  

ABSTRACTTo improve the accuracy and the cost-efficiency of next-generation sequencing in ultralow-frequency mutation detection, we developed the Paired-End and Complementary Consensus Sequencing (PECC-Seq), a PCR-free duplex consensus sequencing approach. PECC-Seq employed shear points as endogenous barcodes to identify consensus sequences from the overlap in the shortened, complementary DNA strands-derived paired-end reads for sequencing error correction. With the high accuracy of PECC-Seq, we identified the characteristic base substitution errors introduced by the end-repair process of mechanical fragmentation-based library preparations, which were prominent at the terminal 6 bp of the library fragments in the 5’-NpCpA-3’ or 5’-NpCpT-3’ trinucleotide context. As demonstrated at the human genome scale (TK6 cells), after removing these potential end-repair artifacts from the terminal 6 bp, PECC-Seq could reduce the sequencing error frequency to mid-10−7 with a relatively low sequencing depth. For TA base pairs, the background error rate could be suppressed to mid-10−8. In mutagen-treated TK6, slight increases in mutagen treatment-related mutant frequencies could be detected, indicating the potential of PECC-Seq in detecting genome-wide ultra-rare mutations. In addition, our finding on the patterns of end-repair artifacts may provide new insights in further reducing technical errors not only for PECC-Seq, but also for other next-generation sequencing techniques.


2017 ◽  
Vol 1 (Special Issue-Supplement) ◽  
pp. 237-237
Author(s):  
Reddaiah Bodanapu ◽  
Krishna Lalam ◽  
Durga Khandekar ◽  
Navitha Kokkonda ◽  
Sivarama Prasad Lekkala ◽  
...  

Genes ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 238 ◽  
Author(s):  
Jinsu Gil ◽  
Yurry Um ◽  
Serim Kim ◽  
Ok Kim ◽  
Sung Koo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document