scholarly journals Two loci contribute epistastically to heterospecific pollen rejection, a postmating isolating barrier between species

2016 ◽  
Author(s):  
Jennafer A. P. Hamlin ◽  
Natasha A. Sherman ◽  
Leonie C. Moyle

ABSTRACTRecognition and rejection of heterospecific male gametes occurs in a broad range of taxa, although the complexity and redundancy of mechanisms underlying this postmating cryptic female choice is poorly understood. In plants, the arena for these interactions is the female reproductive tract (pistil), within which heterospecific pollen tube growth can be arrested via active molecular recognition. Unilateral incompatibility (UI) is one such pistil-mediated barrier in which pollen rejection occurs in only one direction of an interspecific cross. We investigated the genetic basis of pistil-side UI between Solanum species, with the specific goal of understanding the role and magnitude of epistasis between UI QTL. Using heterospecific introgression lines (ILs) between Solanum pennellii and S. lycopersicum, we assessed the individual and pairwise effects of three chromosomal regions (ui1.1, ui3.1, and ui12.1) previously associated with interspecific UI among Solanum species. Specifically, we pyramided ui12.1 with each of ui1.1 and ui3.1, and assessed the strength of UI pollen rejection in pyramided (double introgression) lines, compared to single introgression genotypes. We found that none of the three QTL individually showed UI rejection phenotypes, but lines combining ui3.1 and ui12.1 showed significant pistil-side pollen rejection. Furthermore, double introgression lines that combined different chromosomal regions overlapping ui3.1 differed significantly in their rate of UI, consistent with at least two genetic factors on chromosome three contributing quantitatively to interspecific pollen rejection. Together, our data indicate that loci on both chromosomes 3 and 12 are jointly required for the expression of UI between S. pennellii and S. lycopersicum suggesting that coordinated molecular interactions among a relatively few loci underlying the expression of this postmating prezygotic barrier. In addition, in conjunction with previous data, at least one of these loci appears to also contribute to conspecific self-incompatibility, consistent with a partially shared genetic basis between inter- and intraspecific mechanisms of postmating prezygotic female choice.

2017 ◽  
Vol 7 (7) ◽  
pp. 2151-2159 ◽  
Author(s):  
Jennafer A P Hamlin ◽  
Natasha A Sherman ◽  
Leonie C Moyle

Abstract Recognition and rejection of heterospecific male gametes occurs in a broad range of taxa, although the complexity of mechanisms underlying these components of postmating cryptic female choice is poorly understood. In plants, the arena for postmating interactions is the female reproductive tract (pistil), within which heterospecific pollen tube growth can be arrested via active molecular recognition and rejection. Unilateral incompatibility (UI) is one such postmating barrier in which pollen arrest occurs in only one direction of an interspecific cross. We investigated the genetic basis of pistil-side UI between Solanum species, with the specific goal of understanding the role and magnitude of epistasis between UI QTL. Using heterospecific introgression lines (ILs) between Solanum pennellii and S. lycopersicum, we assessed the individual and pairwise effects of three chromosomal regions (ui1.1, ui3.1, and ui12.1) previously associated with interspecific UI among Solanum species. Specifically, we generated double introgression (‘pyramided’) genotypes that combined ui12.1 with each of ui1.1 and ui3.1, and assessed the strength of UI pollen rejection in the pyramided lines, compared to single introgression genotypes. We found that none of the three QTL individually showed UI rejection phenotypes, but lines combining ui3.1 and ui12.1 showed significant pistil-side pollen rejection. Furthermore, double ILs (DILs) that combined different chromosomal regions overlapping ui3.1 differed significantly in their rate of UI, consistent with at least two genetic factors on chromosome three contributing quantitatively to interspecific pollen rejection. Together, our data indicate that loci on both chromosomes 3 and 12 are jointly required for the expression of UI between S. pennellii and S. lycopersicum, suggesting that coordinated molecular interactions among a relatively few loci underlie the expression of this postmating prezygotic barrier. In addition, in conjunction with previous data, at least one of these loci appears to also contribute to conspecific self-incompatibility (SI), consistent with a partially shared genetic basis between inter- and intraspecific mechanisms of postmating prezygotic female choice.


2019 ◽  
Author(s):  
Cathleen P Jewell ◽  
Simo Zhang ◽  
Matthew J. S. Gibson ◽  
Alejandro Tovar-Méndez ◽  
Bruce McClure ◽  
...  

AbstractA goal of speciation genetics is to understand how the genetic components underlying interspecific reproductive barriers originate within species. Unilateral incompatibility (UI) is a postmating prezygotic barrier in which pollen rejection in the female reproductive tract (style) occurs in only one direction of an interspecific cross. Natural variation in the strength of UI has been observed among populations within species in the wild tomato clade. In some cases, molecular loci underlying self-incompatibility (SI) are associated with this variation in UI, but the mechanistic connection between these intra- and inter-specific pollen rejection behaviors is poorly understood in most instances. We generated an F2 population between SI and SC genotypes of a single species, Solanum pennellii, to examine the genetic basis of intraspecific variation in the strength of UI against other species, and to determine whether loci underlying SI are genetically associated with this variation. We found that F2 individuals vary in the rate at which UI rejection occurs. One large effect QTL detected for this trait co-localized with the SI-determining S-locus. Moreover, individuals that expressed S-RNase—the S-locus protein involved in SI pollen rejection—in their styles had much more rapid UI responses compared to those without S-RNase protein. Our analysis shows that intraspecific variation at mate choice loci—in this case at loci that prevent self-fertilization—can contribute to variation in the strength of interspecific isolation, including postmating prezygotic barriers. Understanding the nature of such standing variation can provide insight into the accumulation of these barriers between diverging lineages.


2020 ◽  
Vol 111 (2) ◽  
pp. 216-226
Author(s):  
Cathleen P Jewell ◽  
Simo V Zhang ◽  
Matthew J S Gibson ◽  
Alejandro Tovar-Méndez ◽  
Bruce McClure ◽  
...  

Abstract A goal of speciation genetics is to understand how the genetic components underlying interspecific reproductive barriers originate within species. Unilateral incompatibility (UI) is a postmating prezygotic barrier in which pollen rejection in the female reproductive tract (style) occurs in only one direction of an interspecific cross. Natural variation in the strength of UI has been observed among populations within species in the wild tomato clade. In some cases, molecular loci underlying self-incompatibility (SI) are associated with this variation in UI, but the mechanistic connection between these intra- and inter-specific pollen rejection behaviors is poorly understood in most instances. We generated an F2 population between SI and SC genotypes of a single species, Solanum pennellii, to examine the genetic basis of intraspecific variation in UI against other species, and to determine whether loci underlying SI are genetically associated with this variation. We found that F2 individuals vary in the rate at which UI rejection occurs. One large effect QTL detected for this trait co-localized with the SI-determining S-locus. Moreover, individuals that expressed S-RNase—the S-locus protein involved in SI pollen rejection—in their styles had much more rapid UI responses compared with those without S-RNase protein. Our analysis shows that intraspecific variation at mate choice loci—in this case at loci that prevent self-fertilization—can contribute to variation in the expression of interspecific isolation, including postmating prezygotic barriers. Understanding the nature of such intraspecific variation can provide insight into the accumulation of these barriers between diverging lineages.


Author(s):  
Patricia L.R. Brennan ◽  
Dara N. Orbach

The field of post-copulatory sexual selection investigates how female and male adaptations have evolved to influence the fertilization of eggs while optimizing fitness during and after copulation, when females mate with multiple males. When females are polyandrous (one female mates with multiple males), they may optimize their mating rate and control the outcome of mating interactions to acquire direct and indirect benefits. Polyandry may also favor the evolution of male traits that offer an advantage in post-copulatory male-male sperm competition. Sperm competition occurs when the sperm, seminal fluid, and/or genitalia of one male directly impacts the outcome of fertilization success of a rival male. When a female mates with multiple males, she may use information from a number of traits to choose who will sire her offspring. This cryptic female choice (CFC) to bias paternity can be based on behavioral, physiological, and morphological criteria (e.g., copulatory courtship, volume and/or composition of seminal fluid, shape of grasping appendages). Because male fitness interests are rarely perfectly aligned with female fitness interests, sexual conflict over mating and fertilization commonly occur during copulatory and post-copulatory interactions. Post-copulatory interactions inherently involve close associations between female and male reproductive characteristics, which in many species potentially include sperm storage and sperm movement inside the female reproductive tract, and highlight the intricate coevolution between the sexes. This coevolution is also common in genital morphology. The great diversity of genitalia among species is attributed to sexual selection. The evolution of genital attributes that allow females to maintain reproductive autonomy over paternity via cryptic female choice or that prevent male manipulation and sexual control via sexually antagonistic coevolution have been well documented. Additionally, cases where genitalia evolve through intrasexual competition are well known. Another important area of study in post-copulatory sexual selection is the examination of trade-offs between investments in pre-copulatory and post-copulatory traits, since organisms have limited energetic resources to allocate to reproduction, and securing both mating and fertilization is essential for reproductive success.


2021 ◽  
Author(s):  
Oyovwi Mega Obukohwo ◽  
Nwangwa Eze Kingsley ◽  
Rotu Arientare Rume ◽  
Emojevwe Victor

The human reproductive system is made up of the primary and secondary organs, which helps to enhances reproduction. The male reproductive system is designed to produce male gametes and convey them to the female reproductive tract through the use of supportive fluids and testosterone synthesis. The paired testis (site of testosterone and sperm generation), scrotum (compartment for testis localisation), epididymis, vas deferens, seminal vesicles, prostate gland, bulbourethral gland, ejaculatory duct, urethra, and penis are the parts of the male reproductive system. The auxiliary organs aid in the maturation and transportation of sperm. Semen is made up of sperm and the secretions of the seminal vesicles, prostate, and bulbourethral glands (the ejaculate). Ejaculate is delivered to the female reproduc¬tive tract by the penis and urethra. The anatomy, embryology and functions of the male reproductive system are discussed in this chapter.


2017 ◽  
Vol 284 (1860) ◽  
pp. 20171032 ◽  
Author(s):  
Nicola Hemmings ◽  
Tim Birkhead

When females mate promiscuously, female sperm storage provides scope to bias the fertilization success towards particular males via the non-random acceptance and utilization of sperm. The difficulties observing post-copulatory processes within the female reproductive tract mean that the mechanisms underlying cryptic female choice remain poorly understood. Here, we use zebra finches Taeniopygia guttata , selected for divergent sperm lengths, combined with a novel technique for isolating and extracting sperm from avian sperm storage tubules (SSTs), to test the hypothesis that sperm from separate ejaculates are stored differentially by female birds. We show that sperm from different inseminations enter different SSTs in the female reproductive tract, resulting in almost complete segregation of the sperm of competing males. We propose that non-random acceptance of sperm into SSTs, reflected in this case by sperm phenotype, provides a mechanism by which long sperm enjoy enhanced fertilization success in zebra finches.


Reproduction ◽  
2014 ◽  
Vol 147 (6) ◽  
pp. 835-845 ◽  
Author(s):  
Meng-Chieh Hsu ◽  
Jyun-Yuan Wang ◽  
Yue-Jia Lee ◽  
De-Shien Jong ◽  
Kuan-Hao Tsui ◽  
...  

Kisspeptin acts as an upstream regulator of the hypothalamus–pituitary–gonad axis, which is one of the main regulatory systems for mammalian reproduction.Kiss1and its receptorKiss1r(also known as G protein-coupled receptor 54 (Gpr54)) are expressed in various organs, but their functions are not well understood. The purpose of this study was to investigate the expression profiles and functions of kisspeptin and KISS1R in the reproductive tissues of imprinting control region mice. To identify the expression pattern and location of kisspeptin and KISS1R in gonads, testes and ovarian tissues were examined by immunohistochemical or immunofluorescent staining. Kisspeptin and KISS1R were expressed primarily in Leydig cells and seminiferous tubules respectively. KISS1R was specifically localized in the acrosomal region of spermatids and mature spermatozoa. Kisspeptin, but not KISS1R, was expressed in the cumulus–oocyte complex and oviductal epithelium of ovarian and oviductal tissues. The sperm intracellular calcium concentrations significantly increased in response to treatment with kisspeptin 10 in Fluo-4-loaded sperm. The IVF rates decreased after treatment of sperm with the kisspeptin antagonist peptide 234. These results suggest that kisspeptin and KISS1R might be involved in the fertilization process in the female reproductive tract. In summary, this study indicates that kisspeptin and KISS1R are expressed in female and male gametes, respectively, and in mouse reproductive tissues. These data strongly suggest that the kisspeptin system could regulate mammalian fertilization and reproduction.


2019 ◽  
Vol 75 (01) ◽  
pp. 6181-2019
Author(s):  
ALEKSANDRA KRAWCZYK ◽  
JADWIGA JAWORSKA-ADAMU

A thorough understanding of the mechanisms leading to the interaction between the sperm and the ovum in the process of fertilization in birds can facilitate more effective programming and control of the reproduction of these animals in breeding farms. In addition, it may allow the introduction of extracorporeal fertilization techniques, which may be important in the creation of transgenic animals and the reproduction of endangered species. In birds, the process of fertilization is not well known. It is conditioned by a series of interactions between mature reproductive cells. Oocytes are formed in the ovarian follicles of the left ovary. After ovulation, an ovum in the metaphase of the second meiotic division enters the oviduct along with the inner perivitelline layer (IPVL). It gets fertilized in this infundibulum. Male gametes are formed in paired testes located in the abdominal cavity. Sperm cells in the female reproductive tract do not require capacitation and are already fully capable of fertilization. As a result of internal insemination, male reproductive cells enter the oviduct. In this organ, they are selected and stored in the primary and secondary sperm storage tubules of the mucous membrane. They are released in batches shortly before ovulation. After reaching the oocyte, the sperm binds to the IPVL. This induces an acrosomal reaction that allows the male reproductive cells to penetrate to the surface of the oocyte, especially at the germinal pole. Next, as a result of physiological polyspermy, many sperm cells reach the ooplasm where they form haploid male pronucleus. This phenomenon is necessary to activate an polylecithal egg and produce a haploid female pronucleus. In the final stage, the female pronucleus merges with the single male pronucleus, which leads to the formation of a diploid zygote. The excess male pronuclei present in ooplasm are broken down by endonucleases (DNases). Understanding the mechanisms leading to the interaction between sperm and oocyte in birds may allow for more accurate programming and breeding of these animals in poultry farms and the introduction of extracorporeal fertilization techniques. In addition, it could be useful for the reproduction of endangered bird species


2020 ◽  
Vol 76 (09) ◽  
pp. 6445-2020
Author(s):  
ALEKSANDRA KRAWCZYK ◽  
JADWIGA JAWORSKA-ADAMU

The formation of a new diploidal organism is preceded by a series of mutual interactions of haploidal gametes. This process is very complicated and requires the prior activation of reproductive cells. Male gametes eventually mature in the female reproductive tract, acquiring mobility and fertilization. This process takes place in two stages. Sperms are first capacitated. This phenomenon is reversible and leads to structural, cytophysiological and biochemical changes in the sperm plasma membrane as well as to the sperm hyperactivation. Then, due to the contact with the zona pellucida of the oocyte, the irreversible acrosome reaction occurs. This process involves the fusion of the sperm plasma membrane with the outer membrane of the acrosome, the release of enzymes and exposure of the inner acrosome membrane. This enables sperm to penetrate towards the perivitelline space and oolemma. Contact with the oocyte initiates a series of interactions leading to egg activation and the fusion of gametes. Each of these stages involves many different factors that result in the recognition, attraction and adhesion of reproductive cells. Knowledge about the activation mechanisms can improve the effectiveness of supported and controlled reproduction techniques.


2013 ◽  
Vol 280 (1769) ◽  
pp. 20131296 ◽  
Author(s):  
Hanne Løvlie ◽  
Mark A. F. Gillingham ◽  
Kirsty Worley ◽  
Tommaso Pizzari ◽  
David S. Richardson

Cryptic female choice may enable polyandrous females to avoid inbreeding or bias offspring variability at key loci after mating. However, the role of these genetic benefits in cryptic female choice remains poorly understood. Female red junglefowl, Gallus gallus , bias sperm use in favour of unrelated males. Here, we experimentally investigate whether this bias is driven by relatedness per se , or by similarity at the major histocompatibility complex (MHC), genes central to vertebrate acquired immunity, where polymorphism is critical to an individual's ability to combat pathogens. Through experimentally controlled natural matings, we confirm that selection against related males' sperm occurs within the female reproductive tract but demonstrate that this is more accurately predicted by MHC similarity: controlling for relatedness per se , more sperm reached the eggs when partners were MHC-dissimilar. Importantly, this effect appeared largely owing to similarity at a single MHC locus (class I minor). Further, the effect of MHC similarity was lost following artificial insemination, suggesting that male phenotypic cues might be required for females to select sperm differentially. These results indicate that postmating mechanisms that reduce inbreeding may do so as a consequence of more specific strategies of cryptic female choice promoting MHC diversity in offspring.


Sign in / Sign up

Export Citation Format

Share Document