scholarly journals The Concept of Male Reproductive Anatomy

2021 ◽  
Author(s):  
Oyovwi Mega Obukohwo ◽  
Nwangwa Eze Kingsley ◽  
Rotu Arientare Rume ◽  
Emojevwe Victor

The human reproductive system is made up of the primary and secondary organs, which helps to enhances reproduction. The male reproductive system is designed to produce male gametes and convey them to the female reproductive tract through the use of supportive fluids and testosterone synthesis. The paired testis (site of testosterone and sperm generation), scrotum (compartment for testis localisation), epididymis, vas deferens, seminal vesicles, prostate gland, bulbourethral gland, ejaculatory duct, urethra, and penis are the parts of the male reproductive system. The auxiliary organs aid in the maturation and transportation of sperm. Semen is made up of sperm and the secretions of the seminal vesicles, prostate, and bulbourethral glands (the ejaculate). Ejaculate is delivered to the female reproduc¬tive tract by the penis and urethra. The anatomy, embryology and functions of the male reproductive system are discussed in this chapter.

Author(s):  
Alexandra Richter ◽  
Ángel A. Luque

The functional reproductive system of three Mediterranean species of Coralliophilidae (Gastropoda: Prosobranchia), Coralliophila brevis, Coralliophila meyendorffii and Babelomurex cariniferus, was compared with that of Coralliophila squamosa and three Leptoconchus species. Differences chiefly in the pallial section of the female reproductive tract separate the Indo-Pacific genus Leptoconchus from the Mediterranean species, and subdivide the latter into three different anatomical groups. Polyphyly of the genus Coralliophila is suggested. Comparison of the reproductive system of coralliophilids with that of the related Muricidae allows identifying characters of Coralliophila brevis, Coralliophila meyendorffii and Babelomurex cariniferus that are unknown in Muricidae. The comparison also reveals a closer similarity of Coralliophila squamosa with Ocenebrinae, suggesting that this species might represent a less derived evolutionary line within Coralliophilidae. The reproductive system of some individuals of Coralliophila meyendorffii and Babelomurex cariniferus undergoing penis reduction in the laboratory is also studied. It sheds some light in the ontogeny of the female pallial reproductive tract, and provides direct evidence for the existence of protandry in these species.


Parasitology ◽  
1992 ◽  
Vol 104 (3) ◽  
pp. 489-496 ◽  
Author(s):  
G. C. Kearn ◽  
I. D. Whittington

Considerable diversity has been found in the reproductive behaviour of benedeniine (capsalid) monogenean parasites. Mating has been observed in Benedenia sp. 1 from the gills of Lutjanus carponatatus; externally attached spermatophores are not involved and parasites indulge in mutual cross-insemination with intromission. In contrast, there is evidence of spermatophore involvement in Benedenia sp. 2 from the fins of Lethrinus miniatus; mating was not observed but an individual was found carrying an external ovoid spermatophore attached by a stalk lodged in the vagina. In specimens of Benedeniella macrocolpa and B. posterocolpa, in which the male reproductive system was functional and the female system not fully developed, the everted cirrus was seen to be lodged in the parasite's own uterus, with, in some individuals, the tip of the cirrus inside the ootype. This is the first time that the copulatory organ has been observed inside the female reproductive tract of the same individual, not just in benedeniines but in monogeneans in general, and is also the first demonstration that monogeneans are capable of self-insemination via the uterine route.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 583
Author(s):  
Jing Gao ◽  
Guanqun Gao ◽  
Jiaxing Wang ◽  
Hui Chen

The male reproductive system, sperm structure, and spermatogenesis of Trypophloeusklimeschi (Coleoptera: Curculionidae: Scolytinae), which is one of the most destructive pests of Populus alba var. pyramidalis (Bunge), were investigated using light microscopy, scanning electron microscopy, and transmission electron microscopy. The male reproductive system of T.klimeschi is composed of testes, seminal vesicles, tubular accessory glands, multilobulated accessory glands, vasa deferentia, and a common ejaculatory duct. In spermatogenesis, two phenomena are apparent: The nuclear chromatin condenses into two different patterns, and an oval preacrosomal vesicle is present at the flank of the Golgi apparatus. The sperm are short, measuring 76.7 ± 1.8 μm in length, and are 508.1 ± 12.9 nm in width. The sperm are composed of a three-layer acrosomal complex, a cylindrical nucleus, two mitochondrial derivatives, a 9 + 9 + 2 axoneme, and two accessory bodies with a large “puff”-like expansion. Mature sperm are individually stored in seminal vesicles. During spermiogenesis, the similarities in the nuclear chromatin condensation characteristics of Curculioninae and Scolytinae are indicative of their close phylogenetic relationship. It appears that the preacrosomal vesicle being flanked by the Golgi apparatus is a characteristic of spermatogenesis in Curculionidae.


1984 ◽  
Vol 32 (6) ◽  
pp. 721 ◽  
Author(s):  
H Marsh ◽  
GE Heinsohn ◽  
TD Glover

The anatomy and histology of the male reproductive tract of the dugong (Dugong dugon) is described. Each testis and its adjacent epididymis lie immediately caudal to the corresponding kidney. The seminal vesicles are large but there is no discrete prostate gland and the bulbo-urethral glands are also diffuse. Both qualitative and quantitative examination of the testes and epididymides of 59 males whose ages have been estimated from tusk dentinal growth layer counts indicate that the male dugong does not produce spermatozoa continuously, despite the absence of a distinct breeding season. Individual dugongs were observed with testes at all stages between complete quiescence and full spermatogenesis, and only 10 of the 40 mature males had fully spermatogenic testes and epididymides packed with spermatozoa. Androgenic and spermatogenic activity of the testes appeared to be in phase, but the testicular histology of some old males suggested that they may have been sterile for long periods.


2017 ◽  
Vol 7 (7) ◽  
pp. 2151-2159 ◽  
Author(s):  
Jennafer A P Hamlin ◽  
Natasha A Sherman ◽  
Leonie C Moyle

Abstract Recognition and rejection of heterospecific male gametes occurs in a broad range of taxa, although the complexity of mechanisms underlying these components of postmating cryptic female choice is poorly understood. In plants, the arena for postmating interactions is the female reproductive tract (pistil), within which heterospecific pollen tube growth can be arrested via active molecular recognition and rejection. Unilateral incompatibility (UI) is one such postmating barrier in which pollen arrest occurs in only one direction of an interspecific cross. We investigated the genetic basis of pistil-side UI between Solanum species, with the specific goal of understanding the role and magnitude of epistasis between UI QTL. Using heterospecific introgression lines (ILs) between Solanum pennellii and S. lycopersicum, we assessed the individual and pairwise effects of three chromosomal regions (ui1.1, ui3.1, and ui12.1) previously associated with interspecific UI among Solanum species. Specifically, we generated double introgression (‘pyramided’) genotypes that combined ui12.1 with each of ui1.1 and ui3.1, and assessed the strength of UI pollen rejection in the pyramided lines, compared to single introgression genotypes. We found that none of the three QTL individually showed UI rejection phenotypes, but lines combining ui3.1 and ui12.1 showed significant pistil-side pollen rejection. Furthermore, double ILs (DILs) that combined different chromosomal regions overlapping ui3.1 differed significantly in their rate of UI, consistent with at least two genetic factors on chromosome three contributing quantitatively to interspecific pollen rejection. Together, our data indicate that loci on both chromosomes 3 and 12 are jointly required for the expression of UI between S. pennellii and S. lycopersicum, suggesting that coordinated molecular interactions among a relatively few loci underlie the expression of this postmating prezygotic barrier. In addition, in conjunction with previous data, at least one of these loci appears to also contribute to conspecific self-incompatibility (SI), consistent with a partially shared genetic basis between inter- and intraspecific mechanisms of postmating prezygotic female choice.


2018 ◽  
Vol 19 (12) ◽  
pp. 4097 ◽  
Author(s):  
Karl Kerns ◽  
Michal Zigo ◽  
Peter Sutovsky

The importance of zinc for male fertility only emerged recently, being propelled in part by consumer interest in nutritional supplements containing ionic trace minerals. Here, we review the properties, biological roles and cellular mechanisms that are relevant to zinc function in the male reproductive system, survey available peer-reviewed data on nutritional zinc supplementation for fertility improvement in livestock animals and infertility therapy in men, and discuss the recently discovered signaling pathways involving zinc in sperm maturation and fertilization. Emphasis is on the zinc-interacting sperm proteome and its involvement in the regulation of sperm structure and function, from spermatogenesis and epididymal sperm maturation to sperm interactions with the female reproductive tract, capacitation, fertilization, and embryo development. Merits of dietary zinc supplementation and zinc inclusion into semen processing media are considered with livestock artificial insemination (AI) and human assisted reproductive therapy (ART) in mind. Collectively, the currently available data underline the importance of zinc ions for male fertility, which could be harnessed to improve human reproductive health and reproductive efficiency in agriculturally important livestock species. Further research will advance the field of sperm and fertilization biology, provide new research tools, and ultimately optimize semen processing procedures for human infertility therapy and livestock AI.


2011 ◽  
Vol 14 (1) ◽  
pp. 149-158 ◽  
Author(s):  
R. Rękawiecki ◽  
M. Kowalik ◽  
J. Kotwica

Nuclear progesterone receptor isoforms and their functions in the female reproductive tract Progesterone (P4), which is produced by the corpus luteum (CL), creates proper conditions for the embryo implantation, its development, and ensures proper conditions for the duration of pregnancy. Besides the non-genomic activity of P4 on target cells, its main physiological effect is caused through genomic action by the progesterone nuclear receptor (PGR). This nuclear progesterone receptor occurs in two specific isoforms, PGRA and PGRB. PGRA isoform acts as an inhibitor of transcriptional action of PGRB. The inactive receptor is connected with chaperone proteins and attachment of P4 causes disconnection of chaperones and unveiling of DNA binding domain (DBD). After receptor dimerization in the cells' nucleus and interaction with hormone response element (HRE), the receptor coactivators are connected and transcription is initiated. The ratio of these isoforms changes during the estrous cycle and reflects the different levels of P4 effect on the reproductive system. Both isoforms, PGRA and PGRB, also show a different response to the P4 receptor antagonist activity. Connection of the antagonist to PGRA can block PGRB, but acting through the PGRB isoform, P4 receptor antagonist may undergo conversion to a strongly receptor agonist. A third isoform, PGRC, has also been revealed. This isoform is the shortest and does not have transcriptional activity. Alternative splicing and insertion of additional exons may lead to the formation of different PGR isoforms. This paper summarizes the available data on the progesterone receptor isoforms and its regulatory action within the female reproductive system.


1986 ◽  
Vol 34 (7) ◽  
pp. 945-948 ◽  
Author(s):  
M B Anderson ◽  
M Collado-Torres ◽  
M R Vaupel

By use of the biotin-avidin immunohistochemical method and a homologous antiserum as the primary antiserum, relaxin immunostaining was absent in the testes, prostate, seminal vesicles, and epididymides of the rat. Relaxin immunostaining was also lacking when anti-porcine relaxin serum was employed as the primary antiserum. Furthermore, immunohistochemical studies for relaxin localization in the reproductive tract of the male mouse using both anti-rat and anti-porcine relaxin sera also revealed an absence of the hormone in the reproductive system of this species. Although this study suggests that immunoreactive relaxin is absent in the male reproductive tracts of both the rat and mouse, it raises some questions concerning the reports in the literature of the presence of relaxin-like substances in the male reproductive tracts of other species. These reports are discussed in relation to our current results.


Endocrinology ◽  
2008 ◽  
Vol 149 (8) ◽  
pp. 4209-4217 ◽  
Author(s):  
Brenda Anguiano ◽  
Nuri Aranda ◽  
Guadalupe Delgado ◽  
Carmen Aceves

We characterized the enzymes that catalyze the deiodination of T4 to T3 in the male reproductive tract. Testis, epididymis (EPI), seminal vesicles, prostate, bulbourethral glands, spermatozoa, and semen were taken from sexually mature rats (300 g). Iodothyronine 5′-deiodinase (5′-D) activity was quantified by the radiolabeled-iodide-release method. 5′-D activity was 10-fold higher in EPI and semen than in the rest of the tissues. In EPI, semen, and prostate, the enzymatic activity was completely inhibited by 1 mm 6-n-propyl-2-thiouracil, whereas in the other tissues the inhibition was partial (50%). The high susceptibility to 6-n-propyl-2-thiouracil inhibition, a ping-pong kinetic pattern, and low cofactor (Michaelis Menten constant for dithiothreitol = 0.7 mm) and high substrate (Michaelis Menten constant for reverse T3 = 0.4 μm) requirements indicate that EPI 5′-D corresponds to type 1 deiodinase (D1). Real-time RT-PCR amplification of D1 mRNA in this tissue confirms this conclusion. The highest EPI D1 expression occurred at the onset of puberty and sexual maturity, and in the adult, this activity was more abundant in corpus and caput than in the caudal region. EPI D1 expression was elevated under conditions of hyperthyroidism and with addition of 17β-estradiol. Our data also showed a direct association between D1 and a functional epididymis marker, the neutral α-glucosidase enzyme, suggesting that local generation of T3 could be associated with the development and function of EPI and/or spermatozoa maturation. Further studies are necessary to analyze the possible physiological relevance of 5′-D in the male reproductive system.


Sign in / Sign up

Export Citation Format

Share Document