scholarly journals Remodeling Pathway Control of Oxidative Phosphorylation by Temperature in the Heart

2017 ◽  
Author(s):  
Hélène Lemieux ◽  
Pierre U. Blier ◽  
Erich Gnaiger

AbstractThe capacity of mitochondrial oxidative phosphorylation (OXPHOS) and fuel substrate supply are key determinants of cardiac muscle performance. Although temperature exerts a strong effect on energy metabolism, until recently numerous respiratory studies of mammalian mitochondria have been carried out below physiological temperature, with substrates supporting submaximal respiratory capacity. We measured mitochondrial respiration as a function of temperature in permeabilized fibers from the left ventricle of the mouse heart. At 37 °C, OXPHOS capacity with electron entry through either Complex I or Complex II into the Q-junction was about half of respiratory capacity with the corresponding physiological substrate combination reconstituting tricarboxylic acid cycle function with convergent electron flow through the NADH&succinate (NS) pathway. When separating the component core mitochondrial pathways, the relative contribution of the NADH pathway increased with a decrease of temperature from 37 to 25 ºC. The additive effect of convergent electron flow has profound consequences for optimization of mitochondrial respiratory control. The apparent excess capacity of cytochrome c oxidase (CIV) was 0.7 above convergent NS-pathway capacity, but would be overestimated nearly 2-fold with respect to respiration restricted by provision of NADH-linked substrates only. The apparent excess capacity of CIV increased sharply at 4 °C, caused by a strong temperature dependence of and OXPHOS limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature and likely modulators of temperature adaptation and acclimatization. Delineating the link between stress and remodeling of OXPHOS is critically important for improving our understanding of metabolic perturbations in disease evolution and cardiac protection. Temperature is not a trivial experimental parameter to consider when addressing these questions.

2011 ◽  
Vol 43 (12) ◽  
pp. 1729-1738 ◽  
Author(s):  
Hélène Lemieux ◽  
Severin Semsroth ◽  
Herwig Antretter ◽  
Daniel Höfer ◽  
Erich Gnaiger

1997 ◽  
Vol 200 (1) ◽  
pp. 83-92 ◽  
Author(s):  
S Vökel ◽  
M K Grieshaber

Oxygen consumption, ATP production and cytochrome c oxidase activity of isolated mitochondria from body-wall tissue of Arenicola marina were measured as a function of sulphide concentration, and the effect of inhibitors of the respiratory complexes on these processes was determined. Concentrations of sulphide between 6 and 9 µmol l-1 induced oxygen consumption with a respiratory control ratio of 1.7. Production of ATP was stimulated by the addition of sulphide, reaching a maximal value of 67 nmol min-1 mg-1 protein at a sulphide concentration of 8 µmol l-1. Under these conditions, 1 mole of ATP was formed per mole of sulphide consumed. Higher concentrations of sulphide led to a decrease in ATP production until complete inhibition occurred at approximately 50 µmol l-1. The production of ATP with malate and succinate was stimulated by approximately 15 % in the presence of 4 µmol l-1 sulphide, but decreased at sulphide concentrations higher than 15­20 µmol l-1. Cytochrome c oxidase was also inhibited by sulphide, showing half-maximal inhibition at 1.5 µmol l-1 sulphide. Sulphide-induced ATP production was inhibited by antimycin, cyanide and oligomycin but not by rotenone or salicylhydroxamic acid. The present data indicate that sulphide oxidation is coupled to oxidative phosphorylation solely by electron flow through cytochrome c oxidase, whereas the alternative oxidase does not serve as a coupling site. At sulphide concentrations higher than 20 µmol l-1, oxidation of sulphide serves mainly as a detoxification process rather than as a source of energy.


1965 ◽  
Vol 49 (1) ◽  
pp. 149-162 ◽  
Author(s):  
Ronald A. Butow ◽  
Efraim Racker

Control of oxidation is the key mechanism in the regulation of energy metabolism. In glycolysis the oxidation of glyceraldehyde-3-phosphate is controlled by DPNH, which inhibits glyceraldehyde-3-phosphate dehydrogenase. In oxidative phosphorylation the inhibition of electron flow from DPNH to oxygen, called "respiratory control," is the subject of this paper. After a discussion of the physiological significance of the "tight coupling" between phosphorylation and oxidation, studies on "loosely coupled" submitochondrial particles are reported. These particles are capable of oxidative phosphorylation in the presence of a suitable phosphate acceptor system, but in contrast to controlled, intact mitochondria they oxidize DPNH in the absence of phosphate and ADP. The addition of o-phenanthroline to submitochondrial particles gives rise to an inhibition of respiration, which is partly reversed by phosphate and ADP or by dinitrophenol. The properties of this model system of respiratory control will be described.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liselotte Bruun Christiansen ◽  
Tine Lovsø Dohlmann ◽  
Trine Pagh Ludvigsen ◽  
Ewa Parfieniuk ◽  
Michal Ciborowski ◽  
...  

AbstractStatins lower the risk of cardiovascular events but have been associated with mitochondrial functional changes in a tissue-dependent manner. We investigated tissue-specific modifications of mitochondrial function in liver, heart and skeletal muscle mediated by chronic statin therapy in a Göttingen Minipig model. We hypothesized that statins enhance the mitochondrial function in heart but impair skeletal muscle and liver mitochondria. Mitochondrial respiratory capacities, citrate synthase activity, coenzyme Q10 concentrations and protein carbonyl content (PCC) were analyzed in samples of liver, heart and skeletal muscle from three groups of Göttingen Minipigs: a lean control group (CON, n = 6), an obese group (HFD, n = 7) and an obese group treated with atorvastatin for 28 weeks (HFD + ATO, n = 7). Atorvastatin concentrations were analyzed in each of the three tissues and in plasma from the Göttingen Minipigs. In treated minipigs, atorvastatin was detected in the liver and in plasma. A significant reduction in complex I + II-supported mitochondrial respiratory capacity was seen in liver of HFD + ATO compared to HFD (P = 0.022). Opposite directed but insignificant modifications of mitochondrial respiratory capacity were seen in heart versus skeletal muscle in HFD + ATO compared to the HFD group. In heart muscle, the HFD + ATO had significantly higher PCC compared to the HFD group (P = 0.0323). In the HFD group relative to CON, liver mitochondrial respiration decreased whereas in skeletal muscle, respiration increased but these changes were insignificant when normalizing for mitochondrial content. Oral atorvastatin treatment in Göttingen Minipigs is associated with a reduced mitochondrial respiratory capacity in the liver that may be linked to increased content of atorvastatin in this organ.


Sign in / Sign up

Export Citation Format

Share Document