scholarly journals A general and powerful stage-wise testing procedure for differential expression and differential transcript usage

2017 ◽  
Author(s):  
Koen Van den Berge ◽  
Charlotte Soneson ◽  
Mark D. Robinson ◽  
Lieven Clement

AbstractBackgroundReductions in sequencing cost and innovations in expression quantification have prompted an emergence of RNA-seq studies with complex designs and data analysis at transcript resolution. These applications involve multiple hypotheses per gene, leading to challenging multiple testing problems. Conventional approaches provide separate top-lists for every contrast and false discovery rate (FDR) control at individual hypothesis level. Hence, they fail to establish proper gene-level error control, which compromises downstream validation experiments. Tests that aggregate individual hypotheses are more powerful and provide gene-level FDR control, but in the RNA-seq literature no methods are available for post-hoc analysis of individual hypotheses.ResultsWe introduce a two-stage procedure that leverages the increased power of aggregated hypothesis tests while maintaining high biological resolution by post-hoc analysis of genes passing the screening hypothesis. Our method is evaluated on simulated and real RNA-seq experiments. It provides gene-level FDR control in studies with complex designs while boosting power for interaction effects without compromising the discovery of main effects. In a differential transcript usage/expression context, stage-wise testing gains power by aggregating hypotheses at the gene level, while providing transcript-level assessment of genes passing the screening stage. Finally, a prostate cancer case study highlights the relevance of combining gene with transcript level results.ConclusionStage-wise testing is a general paradigm that can be adopted whenever individual hypotheses can be aggregated. In our context, it achieves an optimal middle ground between biological resolution and statistical power while providing gene-level FDR control, which is beneficial for downstream biological interpretation and validation.

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 952 ◽  
Author(s):  
Michael I. Love ◽  
Charlotte Soneson ◽  
Rob Patro

Detection of differential transcript usage (DTU) from RNA-seq data is an important bioinformatic analysis that complements differential gene expression analysis. Here we present a simple workflow using a set of existing R/Bioconductor packages for analysis of DTU. We show how these packages can be used downstream of RNA-seq quantification using the Salmon software package. The entire pipeline is fast, benefiting from inference steps by Salmon to quantify expression at the transcript level. The workflow includes live, runnable code chunks for analysis using DRIMSeq and DEXSeq, as well as for performing two-stage testing of DTU using the stageR package, a statistical framework to screen at the gene level and then confirm which transcripts within the significant genes show evidence of DTU. We evaluate these packages and other related packages on a simulated dataset with parameters estimated from real data.


Author(s):  
Jelle J. Goeman ◽  
Livio Finos

Hypotheses tests in bioinformatics can often be set in a tree structure in a very natural way, e.g. when tests are performed at probe, gene, and chromosome level. Exploiting this graph structure in a multiple testing procedure may result in a gain in power or increased interpretability of the results.We present the inheritance procedure, a method of familywise error control for hypotheses structured in a tree. The method starts testing at the top of the tree, following up on those branches in which it finds significant results, and following up on leaf nodes in the neighborhood of those leaves. The method is a uniform improvement over a recently proposed method by Meinshausen. The inheritance procedure has been implemented in the globaltest package which is available on www.bioconductor.org.


2020 ◽  
Author(s):  
Llorenç Quintó ◽  
Jose Miguel Morales-Asencio ◽  
Raquel González ◽  
Clara Menéndez

Since the beginning of the COVID-19 pandemic, the use of hydroxychloroquine (HCQ) has been surrounded by a lot of controversy, both scientific and non-scientific. This has continued with the publication of two trials of HCQ for post-exposure prophylaxis of the infection, which concluded that HCQ is not efficacious to prevent SARS-CoV-2 infection, and their results are influencing public health decisions.We have carried out a comprehensive post-hoc analysis of the statistical power of the two trials, which shows that their power to detect an effect of HCQ in preventing COVID-19 is low, not only for their observed effect size, but also for other clinically important levels of efficacy, and therefore both studies are inconclusive.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 952 ◽  
Author(s):  
Michael I. Love ◽  
Charlotte Soneson ◽  
Rob Patro

Detection of differential transcript usage (DTU) from RNA-seq data is an important bioinformatic analysis that complements differential gene expression analysis. Here we present a simple workflow using a set of existing R/Bioconductor packages for analysis of DTU. We show how these packages can be used downstream of RNA-seq quantification using the Salmon software package. The entire pipeline is fast, benefiting from inference steps by Salmon to quantify expression at the transcript level. The workflow includes live, runnable code chunks for analysis using DRIMSeq and DEXSeq, as well as for performing two-stage testing of DTU using the stageR package, a statistical framework to screen at the gene level and then confirm which transcripts within the significant genes show evidence of DTU. We evaluate these packages and other related packages on a simulated dataset with parameters estimated from real data.


Author(s):  
Tobias Tekath ◽  
Martin Dugas

Abstract Motivation Each year, the number of published bulk and single-cell RNA-seq data sets is growing exponentially. Studies analyzing such data are commonly looking at gene-level differences, while the collected RNA-seq data inherently represents reads of transcript isoform sequences. Utilizing transcriptomic quantifiers, RNA-seq reads can be attributed to specific isoforms, allowing for analysis of transcript-level differences. A differential transcript usage (DTU) analysis is testing for proportional differences in a gene’s transcript composition, and has been of rising interest for many research questions, such as analysis of differential splicing or cell type identification. Results We present the R package DTUrtle, the first DTU analysis workflow for both bulk and single-cell RNA-seq data sets, and the first package to conduct a ‘classical’ DTU analysis in a single-cell context. DTUrtle extends established statistical frameworks, offers various result aggregation and visualization options and a novel detection probability score for tagged-end data. It has been successfully applied to bulk and single-cell RNA-seq data of human and mouse, confirming and extending key results. Additionally, we present novel potential DTU applications like the identification of cell type specific transcript isoforms as biomarkers. Availability The R package DTUrtle is available at https://github.com/TobiTekath/DTUrtle with extensive vignettes and documentation at https://tobitekath.github.io/DTUrtle/. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Rajinder Gupta ◽  
Yannick Schrooders ◽  
Marcha Verheijen ◽  
Adrian Roth ◽  
Jos Kleinjans ◽  
...  

Abstract Summary Typical RNA sequencing (RNA-Seq) analyses are performed either at the gene level by summing all reads from the same locus, assuming that all transcripts from a gene make a protein or at the transcript level, assuming that each transcript displays unique function. However, these assumptions are flawed, as a gene can code for different types of transcripts and different transcripts are capable of synthesizing similar, different or no protein. As a consequence, functional changes are not well illustrated by either gene or transcript analyses. We propose to improve RNA-Seq analyses by grouping the transcripts based on their similar functions. We developed FuSe to predict functional similarities using the primary and secondary structure of proteins. To estimate the likelihood of proteins with similar functions, FuSe computes two confidence scores: knowledge (KS) and discovery (DS) for protein pairs. Overlapping protein pairs exhibiting high confidence are grouped to form ‘similar function protein groups’ and expression is calculated for each functional group. The impact of using FuSe is demonstrated on in vitro cells exposed to paracetamol, which highlight genes responsible for cell adhesion and glycogen regulation which were earlier shown to be not differentially expressed with traditional analysis methods. Availability and implementation The source code is available at https://github.com/rajinder4489/FuSe. Data for APAP exposure are available in the BioStudies database (http://www.ebi.ac.uk/biostudies) under accession numbers S-HECA143, S-HECA(158) and S-HECA139. Supplementary information Supplementary data are available at Bioinformatics online.


F1000Research ◽  
2016 ◽  
Vol 4 ◽  
pp. 1521 ◽  
Author(s):  
Charlotte Soneson ◽  
Michael I. Love ◽  
Mark D. Robinson

High-throughput sequencing of cDNA (RNA-seq) is used extensively to characterize the transcriptome of cells. Many transcriptomic studies aim at comparing either abundance levels or the transcriptome composition between given conditions, and as a first step, the sequencing reads must be used as the basis for abundance quantification of transcriptomic features of interest, such as genes or transcripts. Various quantification approaches have been proposed, ranging from simple counting of reads that overlap given genomic regions to more complex estimation of underlying transcript abundances. In this paper, we show that gene-level abundance estimates and statistical inference offer advantages over transcript-level analyses, in terms of performance and interpretability. We also illustrate that the presence of differential isoform usage can lead to inflated false discovery rates in differential gene expression analyses on simple count matrices but that this can be addressed by incorporating offsets derived from transcript-level abundance estimates. We also show that the problem is relatively minor in several real data sets. Finally, we provide an R package (tximport) to help users integrate transcript-level abundance estimates from common quantification pipelines into count-based statistical inference engines.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 952 ◽  
Author(s):  
Michael I. Love ◽  
Charlotte Soneson ◽  
Rob Patro

Detection of differential transcript usage (DTU) from RNA-seq data is an important bioinformatic analysis that complements differential gene expression analysis. Here we present a simple workflow using a set of existing R/Bioconductor packages for analysis of DTU. We show how these packages can be used downstream of RNA-seq quantification using the Salmon software package. The entire pipeline is fast, benefiting from inference steps by Salmon to quantify expression at the transcript level. The workflow includes live, runnable code chunks for analysis using DRIMSeq and DEXSeq, as well as for performing two-stage testing of DTU using the stageR package, a statistical framework to screen at the gene level and then confirm which transcripts within the significant genes show evidence of DTU. We evaluate these packages and other related packages on a simulated dataset with parameters estimated from real data.


Sign in / Sign up

Export Citation Format

Share Document