scholarly journals Differential transcript usage analysis of bulk and single-cell RNA-seq data with DTUrtle

Author(s):  
Tobias Tekath ◽  
Martin Dugas

Abstract Motivation Each year, the number of published bulk and single-cell RNA-seq data sets is growing exponentially. Studies analyzing such data are commonly looking at gene-level differences, while the collected RNA-seq data inherently represents reads of transcript isoform sequences. Utilizing transcriptomic quantifiers, RNA-seq reads can be attributed to specific isoforms, allowing for analysis of transcript-level differences. A differential transcript usage (DTU) analysis is testing for proportional differences in a gene’s transcript composition, and has been of rising interest for many research questions, such as analysis of differential splicing or cell type identification. Results We present the R package DTUrtle, the first DTU analysis workflow for both bulk and single-cell RNA-seq data sets, and the first package to conduct a ‘classical’ DTU analysis in a single-cell context. DTUrtle extends established statistical frameworks, offers various result aggregation and visualization options and a novel detection probability score for tagged-end data. It has been successfully applied to bulk and single-cell RNA-seq data of human and mouse, confirming and extending key results. Additionally, we present novel potential DTU applications like the identification of cell type specific transcript isoforms as biomarkers. Availability The R package DTUrtle is available at https://github.com/TobiTekath/DTUrtle with extensive vignettes and documentation at https://tobitekath.github.io/DTUrtle/. Supplementary information Supplementary data are available at Bioinformatics online.

F1000Research ◽  
2016 ◽  
Vol 4 ◽  
pp. 1521 ◽  
Author(s):  
Charlotte Soneson ◽  
Michael I. Love ◽  
Mark D. Robinson

High-throughput sequencing of cDNA (RNA-seq) is used extensively to characterize the transcriptome of cells. Many transcriptomic studies aim at comparing either abundance levels or the transcriptome composition between given conditions, and as a first step, the sequencing reads must be used as the basis for abundance quantification of transcriptomic features of interest, such as genes or transcripts. Various quantification approaches have been proposed, ranging from simple counting of reads that overlap given genomic regions to more complex estimation of underlying transcript abundances. In this paper, we show that gene-level abundance estimates and statistical inference offer advantages over transcript-level analyses, in terms of performance and interpretability. We also illustrate that the presence of differential isoform usage can lead to inflated false discovery rates in differential gene expression analyses on simple count matrices but that this can be addressed by incorporating offsets derived from transcript-level abundance estimates. We also show that the problem is relatively minor in several real data sets. Finally, we provide an R package (tximport) to help users integrate transcript-level abundance estimates from common quantification pipelines into count-based statistical inference engines.


2019 ◽  
Vol 35 (14) ◽  
pp. i436-i445 ◽  
Author(s):  
Gregor Sturm ◽  
Francesca Finotello ◽  
Florent Petitprez ◽  
Jitao David Zhang ◽  
Jan Baumbach ◽  
...  

Abstract Motivation The composition and density of immune cells in the tumor microenvironment (TME) profoundly influence tumor progression and success of anti-cancer therapies. Flow cytometry, immunohistochemistry staining or single-cell sequencing are often unavailable such that we rely on computational methods to estimate the immune-cell composition from bulk RNA-sequencing (RNA-seq) data. Various methods have been proposed recently, yet their capabilities and limitations have not been evaluated systematically. A general guideline leading the research community through cell type deconvolution is missing. Results We developed a systematic approach for benchmarking such computational methods and assessed the accuracy of tools at estimating nine different immune- and stromal cells from bulk RNA-seq samples. We used a single-cell RNA-seq dataset of ∼11 000 cells from the TME to simulate bulk samples of known cell type proportions, and validated the results using independent, publicly available gold-standard estimates. This allowed us to analyze and condense the results of more than a hundred thousand predictions to provide an exhaustive evaluation across seven computational methods over nine cell types and ∼1800 samples from five simulated and real-world datasets. We demonstrate that computational deconvolution performs at high accuracy for well-defined cell-type signatures and propose how fuzzy cell-type signatures can be improved. We suggest that future efforts should be dedicated to refining cell population definitions and finding reliable signatures. Availability and implementation A snakemake pipeline to reproduce the benchmark is available at https://github.com/grst/immune_deconvolution_benchmark. An R package allows the community to perform integrated deconvolution using different methods (https://grst.github.io/immunedeconv). Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
David S. Fischer ◽  
Leander Dony ◽  
Martin König ◽  
Abdul Moeed ◽  
Luke Zappia ◽  
...  

Exploratory analysis of single-cell RNA-seq data sets is currently based on statistical and machine learning models that are adapted to each new data set from scratch. A typical analysis workflow includes a choice of dimensionality reduction, selection of clustering parameters, and mapping of prior annotation. These steps typically require several iterations and can take up significant time in many single-cell RNA-seq projects. Here, we introduce sfaira, which is a single-cell data and model zoo which houses data sets as well as pre-trained models. The data zoo is designed to facilitate the fast and easy contribution of data sets, interfacing to a large community of data providers. Sfaira currently includes 233 data sets across 45 organs and 3.1 million cells in both human and mouse. Using these data sets we have trained eight different example model classes, such as autoencoders and logistic cell type predictors: The infrastructure of sfaira is model agnostic and allows training und usage of many previously published models. Sfaira directly aids in exploratory data analysis by replacing embedding and cell type annotation workflows with end-to-end pre-trained parametric models. As further example use cases for sfaira, we demonstrate the extraction of gene-centric data statistics across many tissues, improved usage of cell type labels at different levels of coarseness, and an application for learning interpretable models through data regularization on extremely diverse data sets.


Author(s):  
Irzam Sarfraz ◽  
Muhammad Asif ◽  
Joshua D Campbell

Abstract Motivation R Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for storing one or more matrix-like assays along with associated row and column data. These objects have been used to facilitate the storage and analysis of high-throughput genomic data generated from technologies such as single-cell RNA sequencing. One common computational task in many genomics analysis workflows is to perform subsetting of the data matrix before applying down-stream analytical methods. For example, one may need to subset the columns of the assay matrix to exclude poor-quality samples or subset the rows of the matrix to select the most variable features. Traditionally, a second object is created that contains the desired subset of assay from the original object. However, this approach is inefficient as it requires the creation of an additional object containing a copy of the original assay and leads to challenges with data provenance. Results To overcome these challenges, we developed an R package called ExperimentSubset, which is a data container that implements classes for efficient storage and streamlined retrieval of assays that have been subsetted by rows and/or columns. These classes are able to inherently provide data provenance by maintaining the relationship between the subsetted and parent assays. We demonstrate the utility of this package on a single-cell RNA-seq dataset by storing and retrieving subsets at different stages of the analysis while maintaining a lower memory footprint. Overall, the ExperimentSubset is a flexible container for the efficient management of subsets. Availability and implementation ExperimentSubset package is available at Bioconductor: https://bioconductor.org/packages/ExperimentSubset/ and Github: https://github.com/campbio/ExperimentSubset. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Yixuan Qiu ◽  
Jiebiao Wang ◽  
Jing Lei ◽  
Kathryn Roeder

Abstract Motivation Marker genes, defined as genes that are expressed primarily in a single cell type, can be identified from the single cell transcriptome; however, such data are not always available for the many uses of marker genes, such as deconvolution of bulk tissue. Marker genes for a cell type, however, are highly correlated in bulk data, because their expression levels depend primarily on the proportion of that cell type in the samples. Therefore, when many tissue samples are analyzed, it is possible to identify these marker genes from the correlation pattern. Results To capitalize on this pattern, we develop a new algorithm to detect marker genes by combining published information about likely marker genes with bulk transcriptome data in the form of a semi-supervised algorithm. The algorithm then exploits the correlation structure of the bulk data to refine the published marker genes by adding or removing genes from the list. Availability and implementation We implement this method as an R package markerpen, hosted on CRAN (https://CRAN.R-project.org/package=markerpen). Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Zhun Miao ◽  
Ke Deng ◽  
Xiaowo Wang ◽  
Xuegong Zhang

AbstractSummaryThe excessive amount of zeros in single-cell RNA-seq data include “real” zeros due to the on-off nature of gene transcription in single cells and “dropout” zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher accuracy.Availability and ImplementationThe R package DEsingle is freely available at https://github.com/miaozhun/DEsingle and is under Bioconductor’s consideration [email protected] informationSupplementary data are available at bioRxiv online.


2019 ◽  
Vol 35 (24) ◽  
pp. 5155-5162 ◽  
Author(s):  
Chengzhong Ye ◽  
Terence P Speed ◽  
Agus Salim

Abstract Motivation Dropout is a common phenomenon in single-cell RNA-seq (scRNA-seq) data, and when left unaddressed it affects the validity of the statistical analyses. Despite this, few current methods for differential expression (DE) analysis of scRNA-seq data explicitly model the process that gives rise to the dropout events. We develop DECENT, a method for DE analysis of scRNA-seq data that explicitly and accurately models the molecule capture process in scRNA-seq experiments. Results We show that DECENT demonstrates improved DE performance over existing DE methods that do not explicitly model dropout. This improvement is consistently observed across several public scRNA-seq datasets generated using different technological platforms. The gain in improvement is especially large when the capture process is overdispersed. DECENT maintains type I error well while achieving better sensitivity. Its performance without spike-ins is almost as good as when spike-ins are used to calibrate the capture model. Availability and implementation The method is implemented as a publicly available R package available from https://github.com/cz-ye/DECENT. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Daniel Osorio ◽  
Marieke Lydia Kuijjer ◽  
James J. Cai

Motivation: Characterizing cells with rare molecular phenotypes is one of the promises of high throughput single-cell RNA sequencing (scRNA-seq) techniques. However, collecting enough cells with the desired molecular phenotype in a single experiment is challenging, requiring several samples preprocessing steps to filter and collect the desired cells experimentally before sequencing. Data integration of multiple public single-cell experiments stands as a solution for this problem, allowing the collection of enough cells exhibiting the desired molecular signatures. By increasing the sample size of the desired cell type, this approach enables a robust cell type transcriptome characterization. Results: Here, we introduce rPanglaoDB, an R package to download and merge the uniformly processed and annotated scRNA-seq data provided by the PanglaoDB database. To show the potential of rPanglaoDB for collecting rare cell types by integrating multiple public datasets, we present a biological application collecting and characterizing a set of 157 fibrocytes. Fibrocytes are a rare monocyte-derived cell type, that exhibits both the inflammatory features of macrophages and the tissue remodeling properties of fibroblasts. This constitutes the first fibrocytes' unbiased transcriptome profile report. We compared the transcriptomic profile of the fibrocytes against the fibroblasts collected from the same tissue samples and confirm their associated relationship with healing processes in tissue damage and infection through the activation of the prostaglandin biosynthesis and regulation pathway. Availability and Implementation: rPanglaoDB is implemented as an R package available through the CRAN repositories https://CRAN.R-project.org/package=rPanglaoDB.


2018 ◽  
Author(s):  
Martin Pirkl ◽  
Niko Beerenwinkel

AbstractMotivationNew technologies allow for the elaborate measurement of different traits of single cells. These data promise to elucidate intra-cellular networks in unprecedented detail and further help to improve treatment of diseases like cancer. However, cell populations can be very heterogeneous.ResultsWe developed a mixture of Nested Effects Models (M&NEM) for single-cell data to simultaneously identify different cellular sub-populations and their corresponding causal networks to explain the heterogeneity in a cell population. For inference, we assign each cell to a network with a certain probability and iteratively update the optimal networks and cell probabilities in an Expectation Maximization scheme. We validate our method in the controlled setting of a simulation study and apply it to three data sets of pooled CRISPR screens generated previously by two novel experimental techniques, namely Crop-Seq and Perturb-Seq.AvailabilityThe mixture Nested Effects Model (M&NEM) is available as the R-package mnem at https://github.com/cbgethz/mnem/[email protected], [email protected] informationSupplementary data are available.online.


2019 ◽  
Vol 35 (19) ◽  
pp. 3818-3820 ◽  
Author(s):  
Eugene Urrutia ◽  
Li Chen ◽  
Haibo Zhou ◽  
Yuchao Jiang

Abstract Summary Single-cell assay of transposase-accessible chromatin followed by sequencing (scATAC-seq) is an emerging new technology for the study of gene regulation with single-cell resolution. The data from scATAC-seq are unique—sparse, binary and highly variable even within the same cell type. As such, neither methods developed for bulk ATAC-seq nor single-cell RNA-seq data are appropriate. Here, we present Destin, a bioinformatic and statistical framework for comprehensive scATAC-seq data analysis. Destin performs cell-type clustering via weighted principle component analysis, weighting accessible chromatin regions by existing genomic annotations and publicly available regulomic datasets. The weights and additional tuning parameters are determined via model-based likelihood. We evaluated the performance of Destin using downsampled bulk ATAC-seq data of purified samples and scATAC-seq data from seven diverse experiments. Compared to existing methods, Destin was shown to outperform across all datasets and platforms. For demonstration, we further applied Destin to 2088 adult mouse forebrain cells and identified cell-type-specific association of previously reported schizophrenia GWAS loci. Availability and implementation Destin toolkit is freely available as an R package at https://github.com/urrutiag/destin. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document