scholarly journals Just above chance: is it harder to decode information from human prefrontal cortex BOLD signals?

2017 ◽  
Author(s):  
Apoorva Bhandari ◽  
Christopher Gagne ◽  
David Badre

AbstractUnderstanding the nature and form of prefrontal cortex representations that support flexible behavior is an important open problem in cognitive neuroscience. In humans, multi-voxel pattern analysis (MVPA) of fMRI BOLD measurements has emerged as an important approach for studying neural representations. An implicit, untested assumption underlying many PFC MVPA studies is that the base rate of decoding information from PFC BOLD activity patterns is similar to that of other brain regions. Here we estimate these base rates from a meta-analysis of published MVPA studies and show that the PFC has a significantly lower base rate for decoding than visual sensory cortex. Our results have implications for the design and interpretation of MVPA studies of prefrontal cortex, and raise important questions about its functional organization.

2018 ◽  
Vol 30 (10) ◽  
pp. 1473-1498 ◽  
Author(s):  
Apoorva Bhandari ◽  
Christopher Gagne ◽  
David Badre

The prefrontal cortex (PFC) is central to flexible, goal-directed cognition, and understanding its representational code is an important problem in cognitive neuroscience. In humans, multivariate pattern analysis (MVPA) of fMRI blood oxygenation level-dependent (BOLD) measurements has emerged as an important approach for studying neural representations. Many previous studies have implicitly assumed that MVPA of fMRI BOLD is just as effective in decoding information encoded in PFC neural activity as it is in visual cortex. However, MVPA studies of PFC have had mixed success. Here we estimate the base rate of decoding information from PFC BOLD activity patterns from a meta-analysis of published MVPA studies. We show that PFC has a significantly lower base rate (55.4%) than visual areas in occipital (66.6%) and temporal (71.0%) cortices and one that is close to chance levels. Our results have implications for the design and interpretation of MVPA studies of PFC and raise important questions about its functional organization.


2020 ◽  
Author(s):  
Seongmin A. Park ◽  
Douglas S. Miller ◽  
Erie D. Boorman

ABSTRACTGeneralizing experiences to guide decision making in novel situations is a hallmark of flexible behavior. It has been hypothesized such flexibility depends on a cognitive map of an environment or task, but directly linking the two has proven elusive. Here, we find that discretely sampled abstract relationships between entities in an unseen two-dimensional (2-D) social hierarchy are reconstructed into a unitary 2-D cognitive map in the hippocampus and entorhinal cortex. We further show that humans utilize a grid-like code in several brain regions, including entorhinal cortex and medial prefrontal cortex, for inferred direct trajectories between entities in the reconstructed abstract space during discrete decisions. Moreover, these neural grid-like codes in the entorhinal cortex predict neural decision value computations in the medial prefrontal cortex and temporoparietal junction area during choice. Collectively, these findings show that grid-like codes are used by the human brain to infer novel solutions, even in abstract and discrete problems, and suggest a general mechanism underpinning flexible decision making and generalization.


2012 ◽  
Vol 24 (8) ◽  
pp. 1742-1752 ◽  
Author(s):  
Bryan T. Denny ◽  
Hedy Kober ◽  
Tor D. Wager ◽  
Kevin N. Ochsner

The distinction between processes used to perceive and understand the self and others has received considerable attention in psychology and neuroscience. Brain findings highlight a role for various regions, in particular the medial PFC (mPFC), in supporting judgments about both the self and others. We performed a meta-analysis of 107 neuroimaging studies of self- and other-related judgments using multilevel kernel density analysis [Kober, H., & Wager, T. D. Meta-analyses of neuroimaging data. Wiley Interdisciplinary Reviews, 1, 293–300, 2010]. We sought to determine what brain regions are reliably involved in each judgment type and, in particular, what the spatial and functional organization of mPFC is with respect to them. Relative to nonmentalizing judgments, both self- and other judgments were associated with activity in mPFC, ranging from ventral to dorsal extents, as well as common activation of the left TPJ and posterior cingulate. A direct comparison between self- and other judgments revealed that ventral mPFC as well as left ventrolateral PFC and left insula were more frequently activated by self-related judgments, whereas dorsal mPFC, in addition to bilateral TPJ and cuneus, was more frequently activated by other-related judgments. Logistic regression analyses revealed that ventral and dorsal mPFC lay at opposite ends of a functional gradient: The z coordinates reported in individual studies predicted whether the study involved self- or other-related judgments, which were associated with increasingly ventral or dorsal portions of mPFC, respectively. These results argue for a distributed rather than localizationist account of mPFC organization and support an emerging view on the functional heterogeneity of mPFC.


2021 ◽  
Vol 12 ◽  
Author(s):  
João Castelhano ◽  
Gisela Lima ◽  
Marta Teixeira ◽  
Carla Soares ◽  
Marta Pais ◽  
...  

There is an increasing interest in the neural effects of psychoactive drugs, in particular tryptamine psychedelics, which has been incremented by the proposal that they have potential therapeutic benefits, based on their molecular mimicry of serotonin. It is widely believed that they act mainly through 5HT2A receptors but their effects on neural activation of distinct brain systems are not fully understood. We performed a quantitative meta-analysis of brain imaging studies to investigate the effects of substances within this class (e.g., LSD, Psilocybin, DMT, Ayahuasca) in the brain from a molecular and functional point of view. We investigated the question whether the changes in activation patterns and connectivity map into regions with larger 5HT1A/5HT2A receptor binding, as expected from indolaemine hallucinogens (in spite of the often reported emphasis only on 5HT2AR). We did indeed find that regions with changed connectivity and/or activation patterns match regions with high density of 5HT2A receptors, namely visual BA19, visual fusiform regions in BA37, dorsal anterior and posterior cingulate cortex, medial prefrontal cortex, and regions involved in theory of mind such as the surpramarginal gyrus, and temporal cortex (rich in 5HT1A receptors). However, we also found relevant patterns in other brain regions such as dorsolateral prefrontal cortex. Moreover, many of the above-mentioned regions also have a significant density of both 5HT1A/5HT2A receptors, and available PET studies on the effects of psychedelics on receptor occupancy are still quite scarce, precluding a metanalytic approach. Finally, we found a robust neuromodulatory effect in the right amygdala. In sum, the available evidence points towards strong neuromodulatory effects of tryptamine psychedelics in key brain regions involved in mental imagery, theory of mind and affective regulation, pointing to potential therapeutic applications of this class of substances.


2019 ◽  
Author(s):  
Marlieke T.R. van Kesteren ◽  
Paul Rignanese ◽  
Pierre G. Gianferrara ◽  
Lydia Krabbendam ◽  
Martijn Meeter

AbstractBuilding consistent knowledge schemas that organize information and guide future learning is of great importance in everyday life. Such knowledge building is suggested to occur through reinstatement of prior knowledge during new learning in stimulus-specific brain regions. This process is proposed to yield integration of new with old memories, supported by the medial prefrontal cortex (mPFC) and medial temporal lobe (MTL). Possibly as a consequence, congruency of new information with prior knowledge is known to enhance subsequent memory. Yet, it is unknown how reactivation and congruency interact to optimize memory integration processes that lead to knowledge schemas. To investigate this question, we here used an adapted AB-AC inference paradigm in combination with functional Magnetic Resonance Imaging (fMRI). Participants first studied an AB-association followed by an AC-association, so B (a scene) and C (an object) were indirectly linked through their common association with A (an unknown pseudoword). BC-associations were either congruent or incongruent with prior knowledge (e.g. a bathduck or a hammer in a bathroom), and participants were asked to report subjective reactivation strength for B while learning AC. Behaviorally, both the congruency and reactivation measures enhanced memory integration. In the brain, these behavioral effects related to univariate and multivariate parametric effects of congruency and reactivation on activity patterns in the MTL, mPFC, and Parahippocampal Place Area (PPA). Moreover, mPFC exhibited larger connectivity with the PPA for more congruent associations. These outcomes provide insights into the neural mechanisms underlying memory integration enhancement, which can be important for educational learning.Significance statementHow does our brain build knowledge through integrating information that is learned at different periods in time? This question is important in everyday learning situations such as educational settings. Using an inference paradigm, we here set out to investigate how congruency with, and active reactivation of previously learned information affects memory integration processes in the brain. Both these factors were found to relate to activity in memory-related regions such as the medial prefrontal cortex (mPFC) and the hippocampus. Moreover, activity in the parahippocampal place area (PPA), assumed to reflect reinstatement of the previously learned associate, was found to predict subjective reactivation strength. These results show how we can moderate memory integration processes to enhance subsequent knowledge building.


2021 ◽  
Author(s):  
Ze Fu ◽  
Xiaosha Wang ◽  
Xiaoying Wang ◽  
Huichao Yang ◽  
Jiahuan Wang ◽  
...  

A critical way for humans to acquire, represent and communicate information is through language, yet the underlying computation mechanisms through which language contributes to our word meaning representations are poorly understood. We compared three major types of word computation mechanisms from large language corpus (simple co-occurrence, graph-space relations and neural-network-vector-embedding relations) in terms of the association of words’ brain activity patterns, measured by two functional magnetic resonance imaging (fMRI) experiments. Word relations derived from a graph-space representation, and not neural-network-vector-embedding, had unique explanatory power for the neural activity patterns in brain regions that have been shown to be particularly sensitive to language processes, including the anterior temporal lobe (capturing graph-common-neighbors), inferior frontal gyrus, and posterior middle/inferior temporal gyrus (capturing graph-shortest-path). These results were robust across different window sizes and graph sizes and were relatively specific to language inputs. These findings highlight the role of cumulative language inputs in organizing word meaning neural representations and provide a mathematical model to explain how different brain regions capture different types of language-derived information.


2007 ◽  
Vol 362 (1481) ◽  
pp. 887-899 ◽  
Author(s):  
Paul W Burgess ◽  
Sam J Gilbert ◽  
Iroise Dumontheil

We propose that rostral prefrontal cortex (PFC; approximating area 10) supports a cognitive system that facilitates either stimulus-oriented (SO) or stimulus-independent (SI) attending. SO attending is the behaviour required to concentrate on current sensory input, whereas SI attending is the mental processing that accompanies self-generated or self-maintained thought. Regions of medial area 10 support processes related to the former, whilst areas of lateral area 10 support processes that enable the latter. Three lines of evidence for this ‘gateway hypothesis’ are presented. First, we demonstrate the predicted patterns of activation in area 10 during the performance of new tests designed to stress the hypothetical function. Second, we demonstrate area 10 activations during the performance of established functions (prospective memory, context memory), which should hypothetically involve the proposed attentional system. Third, we examine predictions about behaviour–activation patterns within rostral PFC that follow from the hypothesis. We show with meta-analysis of neuroimaging investigations that these predictions are supported across a wide variety of tasks, thus establishing a general principle for functional imaging studies of this large brain region. We then show that while the gateway hypothesis accommodates a large range of findings relating to the functional organization of area 10 along a medial–lateral dimension, there are further principles relating to other dimensions and functions. In particular, there is a functional dissociation between the anterior medial area 10, which supports processes required for SO attending, and the caudal medial area 10, which supports processes relating to mentalizing.


2021 ◽  
Vol 7 (15) ◽  
pp. eabd5363
Author(s):  
G. Castegnetti ◽  
M. Zurita ◽  
B. De Martino

Value is often associated with reward, emphasizing its hedonic aspects. However, when circumstances change, value must also change (a compass outvalues gold, if you are lost). How are value representations in the brain reshaped under different behavioral goals? To answer this question, we devised a new task that decouples usefulness from its hedonic attributes, allowing us to study flexible goal-dependent mapping. Here, we show that, unlike sensory cortices, regions in the prefrontal cortex (PFC)—usually associated with value computation—remap their representation of perceptually identical items according to how useful the item has been to achieve a specific goal. Furthermore, we identify a coding scheme in the PFC that represents value regardless of the goal, thus supporting generalization across contexts. Our work questions the dominant view that equates value with reward, showing how a change in goals triggers a reorganization of the neural representation of value, enabling flexible behavior.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Hannes Ruge ◽  
Theo AJ Schäfer ◽  
Katharina Zwosta ◽  
Holger Mohr ◽  
Uta Wolfensteller

By following explicit instructions, humans instantaneously get the hang of tasks they have never performed before. We used a specially calibrated multivariate analysis technique to uncover the elusive representational states during the first few implementations of arbitrary rules such as ‘for coffee, press red button’ following their first-time instruction. Distributed activity patterns within the ventrolateral prefrontal cortex (VLPFC) indicated the presence of neural representations specific of individual stimulus-response (S-R) rule identities, preferentially for conditions requiring the memorization of instructed S-R rules for correct performance. Identity-specific representations were detectable starting from the first implementation trial and continued to be present across early implementation trials. The increasingly fluent application of novel rule representations was channelled through increasing cooperation between VLPFC and anterior striatum. These findings inform representational theories on how the prefrontal cortex supports behavioral flexibility specifically by enabling the ad-hoc coding of newly instructed individual rule identities during their first-time implementation.


Sign in / Sign up

Export Citation Format

Share Document