scholarly journals Quantitative analysis shows that repair of Cas9-induced double-strand DNA breaks is slow and error-prone

2017 ◽  
Author(s):  
Eva K. Brinkman ◽  
Tao Chen ◽  
Marcel de Haas ◽  
Hanna A. Holland ◽  
Waseem Akhtar ◽  
...  

SummaryThe RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals a relatively slow repair rate (~6h). Furthermore, the double strand break is predominantly repaired in an error-prone fashion (at least 70%). Both classical and microhomology-mediated end-joining pathways are active and contribute to the repair in a stochastic manner. However, the balance between these two pathways changes over time and can be altered by chemical inhibition of DNAPKcs or additional ionizing radiation. Our strategy is generally applicable to study DSB repair kinetics and fidelity in single loci, and demonstrates that Cas9-induced DSBs are repaired in an unusual manner.

2009 ◽  
Vol 106 (37) ◽  
pp. 15762-15767 ◽  
Author(s):  
Samantha G. Zeitlin ◽  
Norman M. Baker ◽  
Brian R. Chapados ◽  
Evi Soutoglou ◽  
Jean Y. J. Wang ◽  
...  

The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair.


2005 ◽  
Vol 25 (8) ◽  
pp. 3127-3139 ◽  
Author(s):  
Julie S. Martin ◽  
Nicole Winkelmann ◽  
Mark I. R. Petalcorin ◽  
Michael J. McIlwraith ◽  
Simon J. Boulton

ABSTRACT The BRCA2 tumor suppressor is implicated in DNA double-strand break (DSB) repair by homologous recombination (HR), where it regulates the RAD51 recombinase. We describe a BRCA2-related protein of Caenorhabditis elegans (CeBRC-2) that interacts directly with RAD-51 via a single BRC motif and that binds preferentially to single-stranded DNA through an oligonucleotide-oligosaccharide binding fold. Cebrc-2 mutants fail to repair meiotic or radiation-induced DSBs by HR due to inefficient RAD-51 nuclear localization and a failure to target RAD-51 to sites of DSBs. Genetic and cytological comparisons of Cebrc-2 and rad-51 mutants revealed fundamental phenotypic differences that suggest a role for Cebrc-2 in promoting the use of an alternative repair pathway in the absence of rad-51 and independent of nonhomologous end joining (NHEJ). Unlike rad-51 mutants, Cebrc-2 mutants also accumulate RPA-1 at DSBs, and abnormal chromosome aggregates that arise during the meiotic prophase can be rescued by blocking the NHEJ pathway. CeBRC-2 also forms foci in response to DNA damage and can do so independently of rad-51. Thus, CeBRC-2 not only regulates RAD-51 during HR but can also function independently of rad-51 in DSB repair processes.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tao Huang ◽  
Shenli Yuan ◽  
Lei Gao ◽  
Mengjing Li ◽  
Xiaochen Yu ◽  
...  

The histone modification writer Prdm9 has been shown to deposit H3K4me3 and H3K36me3 at future double-strand break (DSB) sites during the very early stages of meiosis, but the reader of these marks remains unclear. Here, we demonstrate that Zcwpw1 is an H3K4me3 reader that is required for DSB repair and synapsis in mouse testes. We generated H3K4me3 reader-dead Zcwpw1 mutant mice and found that their spermatocytes were arrested at the pachytene-like stage, which phenocopies the Zcwpw1 knock–out mice. Based on various ChIP-seq and immunofluorescence analyses using several mutants, we found that Zcwpw1's occupancy on chromatin is strongly promoted by the histone-modification activity of PRDM9. Zcwpw1 localizes to DMC1-labelled hotspots in a largely Prdm9-dependent manner, where it facilitates completion of synapsis by mediating the DSB repair process. In sum, our study demonstrates the function of ZCWPW1 that acts as part of the selection system for epigenetics-based recombination hotspots in mammals.


Author(s):  
Nicole Stantial ◽  
Anna Rogojina ◽  
Matthew Gilbertson ◽  
Yilun Sun ◽  
Hannah Miles ◽  
...  

ABSTRACTTopoisomerase II (Top2) is an essential enzyme that resolves catenanes between sister chromatids as well as supercoils associated with the over- or under-winding of duplex DNA. Top2 alters DNA topology by making a double-strand break (DSB) in DNA and passing an intact duplex through the break. Each component monomer of the Top2 homodimer nicks one of the DNA strands and forms a covalent phosphotyrosyl bond with the 5’ end. Stabilization of this intermediate by chemotherapeutic drugs such as etoposide leads to persistent and potentially toxic DSBs. We describe the isolation of a yeast top2 mutant (top2- F1025Y,R1128G) whose product generates a stabilized cleavage intermediate in vitro. In yeast cells, overexpression of the top2- F1025Y,R1128G allele is associated with a novel mutation signature that is characterized by de novo duplications of DNA sequence that depend on the nonhomologous end-joining pathway of DSB repair. Top2-associated duplications are promoted by the clean removal of the enzyme from DNA ends and are suppressed when the protein is removed as part of an oligonucleotide. TOP2 cells treated with etoposide exhibit the same mutation signature, as do cells that over-express the wild-type protein. These results have implications for genome evolution and are relevant to the clinical use of chemotherapeutic drugs that target Top2.SIGNIFICANCE STATEMENTDNA-strand separation during transcription and replication creates topological problems that are resolved by topoisomerases. These enzymes nick DNA strands to allow strand passage and then reseal the broken DNA to restore its integrity. Topoisomerase II (Top2) nicks complementary DNA strands to create double-strand break (DSBs) intermediates that can be stabilized by chemotherapeutic drugs and are toxic if not repaired. We identified a mutant form of yeast Top2 that forms stabilized cleavage intermediates in the absence of drugs. Over- expression of the mutant Top2 was associated with a unique mutation signature in which small (1-4 bp), unique segments of DNA were duplicated. These de novo duplications required the nonhomologous end-joining pathway of DSB repair, and their Top2-dependence has clinical and evolutionary implications.


2018 ◽  
Author(s):  
Alexander J. Garvin ◽  
Alexandra K. Walker ◽  
Ruth M. Densham ◽  
Anoop Singh Chauhan ◽  
Helen R. Stone ◽  
...  

AbstractSUMOylation in the DNA double-strand break (DSB) response regulates recruitment, activity and clearance of repair factors. However, our understanding of a role for deSUMOylation in this process is limited. Here we identify different mechanistic roles for deSUMOylation in homologous recombination (HR) and non-homologous enjoining (NHEJ) through the investigation of the deSUMOylase SENP2. We find regulated deSUMOylation of MDC1 prevents excessive SUMOylation and its RNF4-VCP mediated clearance from DSBs, thereby promoting NHEJ. In contrast we show HR is differentially sensitive to SUMO availability and SENP2 activity is needed to provide SUMO. SENP2 is amplified as part of the chromosome 3q amplification in many cancers. Increased SENP2 expression prolongs MDC1 foci retention and increases NHEJ and radioresistance. Collectively our data reveal that deSUMOylation differentially primes cells for responding to DSBs and demonstrates the ability of SENP2 to tune DSB repair responses.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2421-2421
Author(s):  
Amit Patel ◽  
Luis Alcaide Aragon

Abstract Background: Chromosomal breakage results from a DNA double strand break (DSB), and is repaired to maintain and restore genetic integrity, principally through two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is initiated by nucleolytic resection of a DSB in the presence of cyclin-dependent kinase 1 (Cdk1) activity. DSB repair through HR is dependent on Rad52, and can be error-free when a sister chromatid is used as a template for repair. However, HR is mutagenic when any other template is used for repair. Loss of nucleotides adjacent to the DSB is a feature of repair through NHEJ. There is co-relation between Cdk1 activity and the presence of a sister chromatid. The research question was, in addition to Cdk1 activity is the presence of an intact sister chromatid a requirement to initiate DSB repair with the HR pathway. Methods: Cdk1 activity peaks during mitosis in the presence of an intact sister chromatid. To study DSB resection and repair in cells arrested in either mitotic metaphase or telophase when Cdk1-Clb2 was active, conditional alleles were constructed in a eukaryotic haploid budding yeast model of HR. The model permitted simultaneous induction of a single site-specific DSB in cells that were synchronised to a phase of the cell division cycle. Physical monitoring of the kinetics of DSB formation, nucleolytic resection of adjacent DNA, and DSB repair, was achieved by probing Southern membranes after restriction enzyme digestion of extracted genomic DNA from time courses. Results: Sister chromatids were segregated during telophase arrest induced by either Cdc14 or Cdc15 depletion. Metaphase arrest was achieved with Cdc20 depletion, either directly, or indirectly by activation of the spindle assembly checkpoint by inhibition of microtubule polymerisation. Sister chromatids were unsegregated and physically attached through cohesin during metaphase. The absence of an intact sister chromatid did not prevent DSB repair with the HR pathway during telophase. Nucleolytic resection was observed in the presence or absence of an intra-chromosomal homologous but non-identical DNA repair template. The DSB cut site did not become resistant to cycles of re-cleavage through loss of adjacent nucleotides. DSB repair by HR was dependent on Rad52. The kinetics of nucleolytic resection adjacent to the DSB, and repair by HR, were similar during telophase and metaphase. Conclusions: This is the first study to report the observation that the availability of the sister chromatid is not a requirement to promote DSB repair with the HR pathway during telophase. Initiation of HR occurs despite segregated sister chromatids, even in the absence of a non-identical homologous DNA donor template, with inherently mutagenic repair by HR. This unexpected discovery has important clinical implications to the pathogenesis of chromosomal translocations and oncogenesis, and tumour progression with repair of treatment-induced DSBs. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Ruben Schep ◽  
Eva K. Brinkman ◽  
Christ Leemans ◽  
Xabier Vergara ◽  
Ben Morris ◽  
...  

AbstractDNA double-strand break (DSB) repair is mediated by multiple pathways, including classical non-homologous end-joining pathway (NHEJ) and several homology-driven repair pathways. This is particularly important for Cas9-mediated genome editing, where the outcome critically depends on the pathway that repairs the break. It is thought that the local chromatin context affects the pathway choice, but the underlying principles are poorly understood. Using a newly developed multiplexed reporter assay in combination with Cas9 cutting, we systematically measured the relative activities of three DSB repair pathways as function of chromatin context in >1,000 genomic locations. This revealed that NHEJ is broadly biased towards euchromatin, while microhomology-mediated end-joining (MMEJ) is more efficient in specific heterochromatin contexts. In H3K27me3-marked heterochromatin, inhibition of the H3K27 methyltransferase EZH2 shifts the balance towards NHEJ. Single-strand templated repair (SSTR), often used for precise CRISPR editing, competes with MMEJ, and this competition is weakly associated with chromatin context. These results provide insight into the impact of chromatin on DSB repair pathway balance, and guidance for the design of Cas9-mediated genome editing experiments.


2008 ◽  
Vol 28 (24) ◽  
pp. 7380-7393 ◽  
Author(s):  
Leizhen Wei ◽  
Li Lan ◽  
Zehui Hong ◽  
Akira Yasui ◽  
Chikashi Ishioka ◽  
...  

ABSTRACT BRCA1 is the first susceptibility gene to be linked to breast and ovarian cancers. Although mounting evidence has indicated that BRCA1 participates in DNA double-strand break (DSB) repair pathways, its precise mechanism is still unclear. Here, we analyzed the in situ response of BRCA1 at DSBs produced by laser microirradiation. The amino (N)- and carboxyl (C)-terminal fragments of BRCA1 accumulated independently at DSBs with distinct kinetics. The N-terminal BRCA1 fragment accumulated immediately after laser irradiation at DSBs and dissociated rapidly. In contrast, the C-terminal fragment of BRCA1 accumulated more slowly at DSBs but remained at the sites. Interestingly, rapid accumulation of the BRCA1 N terminus, but not the C terminus, at DSBs depended on Ku80, which functions in the nonhomologous end-joining (NHEJ) pathway, independently of BARD1, which binds to the N terminus of BRCA1. Two small regions in the N terminus of BRCA1 independently accumulated at DSBs and interacted with Ku80. Missense mutations found within the N terminus of BRCA1 in cancers significantly changed the kinetics of its accumulation at DSBs. A P142H mutant failed to associate with Ku80 and restore resistance to irradiation in BRCA1-deficient cells. These might provide a molecular basis of the involvement of BRCA1 in the NHEJ pathway of the DSB repair process.


Genetics ◽  
1999 ◽  
Vol 151 (3) ◽  
pp. 1127-1141 ◽  
Author(s):  
Philip Ng ◽  
Mark D Baker

AbstractIn the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin μ-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal μ-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal μ-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process: The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an “end” bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence.Formation of hDNA was frequently associated with gene targeting and, in most cases, began ∼645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism.


2019 ◽  
Author(s):  
Tao Huang ◽  
Shenli Yuan ◽  
Lei Gao ◽  
Mengjing Li ◽  
Xiaochen Yu ◽  
...  

ABSTRACTThe histone modification writer PRDM9 has been shown to deposit H3K4me3 and H3K36me3 at future double-strand break (DSB) sites during the very early stages of meiosis, but the reader of these marks remains unclear. Here, we demonstrate that ZCWPW1 is an H3K4me3 reader that is required for DSB repair and synapsis in mouse testes. We generated H3K4me3 reader-dead ZCWPW1 mutant mice and found that their spermatocytes were arrested at the pachytene-like stage, which phenocopies the Zcwpw1 knock–out mice. Based on various ChIP-seq and immunofluorescence analyses using several mutants, we found that ZCWPW1’s occupancy on chromatin is strongly promoted by the histone-modification activity of PRDM9. ZCWPW1 localizes to DMC1-labelled hotspots in a largely PRDM9-dependent manner, where it facilitates completion of synapsis by mediating the DSB repair process. In sum, our study demonstrates the function of ZCWPW1 that acts as part of the selection system for epigenetics-based recombination hotspots in mammals.


Sign in / Sign up

Export Citation Format

Share Document