scholarly journals RNA Transcriptome Mapping with GraphMap

2017 ◽  
Author(s):  
Krešimir Križanović ◽  
Ivan Sović ◽  
Ivan Krpelnik ◽  
Mile Šikić

AbstractNext generation sequencing technologies have made RNA sequencing widely accessible and applicable in many areas of research. In recent years, 3rd generation sequencing technologies have matured and are slowly replacing NGS for DNA sequencing. This paper presents a novel tool for RNA mapping guided by gene annotations. The tool is an adapted version of a previously developed DNA mapper – GraphMap, tailored for third generation sequencing data, such as those produced by Pacific Biosciences or Oxford Nanopore Technologies devices. It uses gene annotations to generate a transcriptome, uses a DNA mapping algorithm to map reads to the transcriptome, and finally transforms the mappings back to genome coordinates. Modified version of GraphMap is compared on several synthetic datasets to the state-of-the-art RNAseq mappers enabled to work with third generation sequencing data. The results show that our tool outperforms other tools in general mapping quality.

2020 ◽  
Vol 71 (18) ◽  
pp. 5313-5322 ◽  
Author(s):  
Kathryn Dumschott ◽  
Maximilian H-W Schmidt ◽  
Harmeet Singh Chawla ◽  
Rod Snowdon ◽  
Björn Usadel

Abstract DNA sequencing was dominated by Sanger’s chain termination method until the mid-2000s, when it was progressively supplanted by new sequencing technologies that can generate much larger quantities of data in a shorter time. At the forefront of these developments, long-read sequencing technologies (third-generation sequencing) can produce reads that are several kilobases in length. This greatly improves the accuracy of genome assemblies by spanning the highly repetitive segments that cause difficulty for second-generation short-read technologies. Third-generation sequencing is especially appealing for plant genomes, which can be extremely large with long stretches of highly repetitive DNA. Until recently, the low basecalling accuracy of third-generation technologies meant that accurate genome assembly required expensive, high-coverage sequencing followed by computational analysis to correct for errors. However, today’s long-read technologies are more accurate and less expensive, making them the method of choice for the assembly of complex genomes. Oxford Nanopore Technologies (ONT), a third-generation platform for the sequencing of native DNA strands, is particularly suitable for the generation of high-quality assemblies of highly repetitive plant genomes. Here we discuss the benefits of ONT, especially for the plant science community, and describe the issues that remain to be addressed when using ONT for plant genome sequencing.


GigaScience ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Davide Bolognini ◽  
Alberto Magi ◽  
Vladimir Benes ◽  
Jan O Korbel ◽  
Tobias Rausch

Abstract Background Tandem repeat sequences are widespread in the human genome, and their expansions cause multiple repeat-mediated disorders. Genome-wide discovery approaches are needed to fully elucidate their roles in health and disease, but resolving tandem repeat variation accurately remains a challenging task. While traditional mapping-based approaches using short-read data have severe limitations in the size and type of tandem repeats they can resolve, recent third-generation sequencing technologies exhibit substantially higher sequencing error rates, which complicates repeat resolution. Results We developed TRiCoLOR, a freely available tool for tandem repeat profiling using error-prone long reads from third-generation sequencing technologies. The method can identify repetitive regions in sequencing data without a prior knowledge of their motifs or locations and resolve repeat multiplicity and period size in a haplotype-specific manner. The tool includes methods to interactively visualize the identified repeats and to trace their Mendelian consistency in pedigrees. Conclusions TRiCoLOR demonstrates excellent performance and improved sensitivity and specificity compared with alternative tools on synthetic data. For real human whole-genome sequencing data, TRiCoLOR achieves high validation rates, suggesting its suitability to identify tandem repeat variation in personal genomes.


Author(s):  
Ehsan Haghshenas ◽  
Hossein Asghari ◽  
Jens Stoye ◽  
Cedric Chauve ◽  
Faraz Hach

AbstractThird generation sequencing technologies from platforms such as Oxford Nanopore Technologies and Pacific Biosciences have paved the way for building more contiguous assemblies and complete reconstruction of genomes. The larger effective length of the reads generated with these technologies has provided a mean to overcome the challenges of short to mid-range repeats. Currently, accurate long read assemblers are computationally expensive while faster methods are not as accurate. Therefore, there is still an unmet need for tools that are both fast and accurate for reconstructing small and large genomes. Despite the recent advances in third generation sequencing, researchers tend to generate second generation reads for many of the analysis tasks. Here, we present HASLR, a hybrid assembler which uses both second and third generation sequencing reads to efficiently generate accurate genome assemblies. Our experiments show that HASLR is not only the fastest assembler but also the one with the lowest number of misassemblies on all the samples compared to other tested assemblers. Furthermore, the generated assemblies in terms of contiguity and accuracy are on par with the other tools on most of the samples.AvailabilityHASLR is an open source tool available at https://github.com/vpc-ccg/haslr.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weihong Qi ◽  
Andrea Colarusso ◽  
Miriam Olombrada ◽  
Ermenegilda Parrilli ◽  
Andrea Patrignani ◽  
...  

Abstract Pseudoalteromonas haloplanktis TAC125 is among the most commonly studied bacteria adapted to cold environments. Aside from its ecological relevance, P. haloplanktis has a potential use for biotechnological applications. Due to its importance, we decided to take advantage of next generation sequencing (Illumina) and third generation sequencing (PacBio and Oxford Nanopore) technologies to resequence its genome. The availability of a reference genome, obtained using whole genome shotgun sequencing, allowed us to study and compare the results obtained by the different technologies and draw useful conclusions for future de novo genome assembly projects. We found that assembly polishing using Illumina reads is needed to achieve a consensus accuracy over 99.9% when using Oxford Nanopore sequencing, but not in PacBio sequencing. However, the dependency of consensus accuracy on coverage is lower in Oxford Nanopore than in PacBio, suggesting that a cost-effective solution might be the use of low coverage Oxford Nanopore sequencing together with Illumina reads. Despite the differences in consensus accuracy, all sequencing technologies revealed the presence of a large plasmid, pMEGA, which was undiscovered until now. Among the most interesting features of pMEGA is the presence of a putative error-prone polymerase regulated through the SOS response. Aside from the characterization of the newly discovered plasmid, we confirmed the sequence of the small plasmid pMtBL and uncovered the presence of a potential partitioning system. Crucially, this study shows that the combination of next and third generation sequencing technologies give us an unprecedented opportunity to characterize our bacterial model organisms at a very detailed level.


2020 ◽  
Vol 15 ◽  
Author(s):  
Hongdong Li ◽  
Wenjing Zhang ◽  
Yuwen Luo ◽  
Jianxin Wang

Aims: Accurately detect isoforms from third generation sequencing data. Background: Transcriptome annotation is the basis for the analysis of gene expression and regulation. The transcriptome annotation of many organisms such as humans is far from incomplete, due partly to the challenge in the identification of isoforms that are produced from the same gene through alternative splicing. Third generation sequencing (TGS) reads provide unprecedented opportunity for detecting isoforms due to their long length that exceeds the length of most isoforms. One limitation of current TGS reads-based isoform detection methods is that they are exclusively based on sequence reads, without incorporating the sequence information of known isoforms. Objective: Develop an efficient method for isoform detection. Method: Based on annotated isoforms, we propose a splice isoform detection method called IsoDetect. First, the sequence at exon-exon junction is extracted from annotated isoforms as the “short feature sequence”, which is used to distinguish different splice isoforms. Second, we aligned these feature sequences to long reads and divided long reads into groups that contain the same set of feature sequences, thereby avoiding the pair-wise comparison among the large number of long reads. Third, clustering and consensus generation are carried out based on sequence similarity. For the long reads that do not contain any short feature sequence, clustering analysis based on sequence similarity is performed to identify isoforms. Result: Tested on two datasets from Calypte Anna and Zebra Finch, IsoDetect showed higher speed and compelling accuracy compared with four existing methods. Conclusion: IsoDetect is a promising method for isoform detection. Other: This paper was accepted by the CBC2019 conference.


2020 ◽  
Vol 36 (12) ◽  
pp. 3669-3679 ◽  
Author(s):  
Can Firtina ◽  
Jeremie S Kim ◽  
Mohammed Alser ◽  
Damla Senol Cali ◽  
A Ercument Cicek ◽  
...  

Abstract Motivation Third-generation sequencing technologies can sequence long reads that contain as many as 2 million base pairs. These long reads are used to construct an assembly (i.e. the subject’s genome), which is further used in downstream genome analysis. Unfortunately, third-generation sequencing technologies have high sequencing error rates and a large proportion of base pairs in these long reads is incorrectly identified. These errors propagate to the assembly and affect the accuracy of genome analysis. Assembly polishing algorithms minimize such error propagation by polishing or fixing errors in the assembly by using information from alignments between reads and the assembly (i.e. read-to-assembly alignment information). However, current assembly polishing algorithms can only polish an assembly using reads from either a certain sequencing technology or a small assembly. Such technology-dependency and assembly-size dependency require researchers to (i) run multiple polishing algorithms and (ii) use small chunks of a large genome to use all available readsets and polish large genomes, respectively. Results We introduce Apollo, a universal assembly polishing algorithm that scales well to polish an assembly of any size (i.e. both large and small genomes) using reads from all sequencing technologies (i.e. second- and third-generation). Our goal is to provide a single algorithm that uses read sets from all available sequencing technologies to improve the accuracy of assembly polishing and that can polish large genomes. Apollo (i) models an assembly as a profile hidden Markov model (pHMM), (ii) uses read-to-assembly alignment to train the pHMM with the Forward–Backward algorithm and (iii) decodes the trained model with the Viterbi algorithm to produce a polished assembly. Our experiments with real readsets demonstrate that Apollo is the only algorithm that (i) uses reads from any sequencing technology within a single run and (ii) scales well to polish large assemblies without splitting the assembly into multiple parts. Availability and implementation Source code is available at https://github.com/CMU-SAFARI/Apollo. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
E. S. Gribchenko

The transcriptome profiles the cv. Frisson mycorrhizal roots and inoculated nitrogen-fixing nodules were investigated using the Oxford Nanopore sequencing technology. A database of gene isoforms and their expression has been created.


Sign in / Sign up

Export Citation Format

Share Document