scholarly journals Printed Droplet Microfluidics for on demand dispensing of picoliter droplets and cells

2017 ◽  
Author(s):  
Russell H. Cole ◽  
Shi-yang Tang ◽  
Christian A. Siltanen ◽  
Payam Shahi ◽  
Jesse Q. Zhang ◽  
...  

AbstractAlthough the elementary unit of biology is the cell, high throughput methods for the microscale manipulation of cells and reagents are limited. The existing options are either slow, lack single cell specificity, or utilize fluid volumes out of scale with those of cells. Here, we present Printed Droplet Microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single cell printer, enabling high throughput generation of intricate arrays of droplets, cells, and microparticles. Printed Droplet Microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

2017 ◽  
Vol 114 (33) ◽  
pp. 8728-8733 ◽  
Author(s):  
Russell H. Cole ◽  
Shi-Yang Tang ◽  
Christian A. Siltanen ◽  
Payam Shahi ◽  
Jesse Q. Zhang ◽  
...  

Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 775-784 ◽  
Author(s):  
Hui-Sung Moon ◽  
Kwanghwi Je ◽  
Jae-Woong Min ◽  
Donghyun Park ◽  
Kyung-Yeon Han ◽  
...  

We developed a modified high-throughput droplet barcoding technique for single-cell Drop-Seq via introduction of hydrodynamic ordering in a spiral microchannel.


Molecules ◽  
2016 ◽  
Vol 21 (7) ◽  
pp. 881 ◽  
Author(s):  
Na Wen ◽  
Zhan Zhao ◽  
Beiyuan Fan ◽  
Deyong Chen ◽  
Dong Men ◽  
...  

2021 ◽  
Vol 75 (4) ◽  
pp. 257-260
Author(s):  
Jaicy Vallapurackal

Artificial metalloenzymes (ArMs) are a class of enzymes holding great promise. In contrast to natural enzymes, the core of ArMs is a synthetic metallocofactor, with potential for bio-orthogonal reactivity, incorporated within a host protein. Next to chemical optimization of the metallocofactor, genetic optimization of the protein allows the further improvement of the ArM. Genetic optimization through directed evolution requires extensive screening of a large sequence-scape to enable the optimization of a desired phenotype. The process is however mostly limited by the throughput of the tools and methods available for screening. In recent years, versatile methods based on droplet microfluidics have been developed to address the need for higher throughput. This article aims to give an introduction into ArMs and the recent technological developments allowing high-throughput directed evolution of enzymes.


2021 ◽  
Author(s):  
David Conchouso ◽  
Amani Al-Ma’abadi ◽  
Hayedeh Behzad ◽  
Mohammed Alarawi ◽  
Masahito Hosokawa ◽  
...  

<p>Droplet microfluidics techniques have shown promising results to study single-cells at high throughput. However, their adoption in laboratories studying “-omics” sciences is still irrelevant because of the field’s complex and multidisciplinary nature. To facilitate their use, here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput. First, a device encapsulating single-cells in droplets at a rate of ~ 250 Hz is described considering droplet size and cell growth. Then, we expand on previously reported fluorescent activated droplet sorting (FADS) systems to integrate the use of 4 independent fluorescence-exciting lasers (e.g., 405, 488, 561, 637 nm) in a single platform to make it compatible with different fluorescence-emitting biosensors. For this sorter, both hardware and software are provided and optimized for effortlessly sorting droplets at 60 Hz. Then, a passive droplet merger was also integrated into our method to enable adding new reagents to already made droplets at a rate of 200 Hz. Finally, we provide an optimized recipe for manufacturing these chips using silicon dry-etching tools. Because of the overall integration and the technical details presented here, our approach allows biologists to quickly use microfluidic technologies and achieve both single-cell resolution and high-throughput (> 50,000 cells/day) capabilities to mining and bioprospecting metagenomic data.</p>


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1211
Author(s):  
Khashayar Bajgiran ◽  
Alejandro Cordova ◽  
Riad Elkhanoufi ◽  
James Dorman ◽  
Adam Melvin

Droplet microfluidics offers a wide range of applications, including high-throughput drug screening and single-cell DNA amplification. However, these platforms are often limited to single-input conditions that prevent them from analyzing multiple input parameters (e.g., combined cellular treatments) in a single experiment. Droplet multiplexing will result in higher overall throughput, lowering cost of fabrication, and cutting down the hands-on time in number of applications such as single-cell analysis. Additionally, while lab-on-a-chip fabrication costs have decreased in recent years, the syringe pumps required for generating droplets of uniform shape and size remain cost-prohibitive for researchers interested in utilizing droplet microfluidics. This work investigates the potential of simultaneously generating droplets from a series of three in-line T-junctions utilizing gravity-driven flow to produce consistent, well-defined droplets. Implementing reservoirs with equal heights produced inconsistent flow rates that increased as a function of the distance between the aqueous inlets and the oil inlet. Optimizing the three reservoir heights identified that taller reservoirs were needed for aqueous inlets closer to the oil inlet. Studying the relationship between the ratio of oil-to-water flow rates () found that increasing resulted in smaller droplets and an enhanced droplet generation rate. An ANOVA was performed on droplet diameter to confirm no significant difference in droplet size from the three different aqueous inlets. The work described here offers an alternative approach to multiplexed droplet microfluidic devices allowing for the high-throughput interrogation of three sample conditions in a single device. It also has provided an alternative method to induce droplet formation that does not require multiple syringe pumps.


Sign in / Sign up

Export Citation Format

Share Document