scholarly journals Quantifying the impact of an inference model in Bayesian phylogenetics

Author(s):  
Richèl J.C. Bilderbeek ◽  
Giovanni Laudanno ◽  
Rampal S. Etienne

SummaryPhylogenetic trees are currently routinely reconstructed from an alignment of character sequences (usually nucleotide sequences). Bayesian tools, such as MrBayes, RevBayes and BEAST2, have gained much popularity over the last decade, as they allow joint estimation of the posterior distribution of the phylogenetic trees and the parameters of the underlying inference model. An important ingredient of these Bayesian approaches is the species tree prior. In principle, the Bayesian framework allows for comparing different tree priors, which may elucidate the macroevolutionary processes underlying the species tree. In practice, however, only macroevolutionary models that allow for fast computation of the prior probability are used. The question is how accurate the tree estimation is when the real macroevolutionary processes are substantially different from those assumed in the tree prior.Here we present pirouette, a free and open-source R package that assesses the inference error made by Bayesian phylogenetics for a given macroevolutionary diversification model. pirouette makes use of BEAST2, but its philosophy applies to any Bayesian phylogenetic inference tool.We describe pirouette’s usage providing full examples in which we interrogate a model for its power to describe another.Last, we discuss the results obtained by the examples and their interpretation.

2017 ◽  
Author(s):  
Erin K. Molloy ◽  
Tandy Warnow

AbstractSpecies tree estimation from loci sampled from multiple genomes is now common, but is challenged by the heterogeneity across the genome due to multiple processes, such as gene duplication and loss, horizontal gene transfer, and incomplete lineage sorting. Although methods for estimating species trees have been developed that address gene tree heterogeneity due to incomplete lineage sorting, many of these methods operate by combining estimated gene trees and are hence vulnerable to gene tree quality. There is also the added concern that missing data, which is frequently encountered in genome-scale datasets, will impact species tree estimation.Our study addresses the impact of gene filtering on species trees inferred from multi-gene datasets. We address these questions using a large and heterogeneous collection of simulated datasets both with and without missing data. We compare several established coalescent-based methods (ASTRAL, ASTRID, MP-EST, and SVDquartets within PAUP*) as well as unpartitioned concatenation using maximum likelihood (RAxML).Our study shows that gene tree error and missing data impact all methods (and some methods degrade more than others), but the degree of incomplete lineage sorting and gene tree estimation error impacts the absolute and relative performance of methods as well as their response to gene filtering strategies. We find that filtering genes based on the degree of missing data is either neutral or else reduces the accuracy of all five methods examined, and so is not recommended. Filtering genes based on gene tree estimation error shows somewhat different trends. Under low levels of incomplete lineage sorting, removing genes with high gene tree estimation error can improve the accuracy of summary methods, but only if not too many genes are removed. Otherwise, filtering genes tends to increase error, especially under high levels of incomplete lineage sorting. Hence, while filtering genes based on missing data is not recommended, there are conditions under which removing high error gene trees can improve species tree estimation. This study provides insights into prior studies and suggests approaches for analyzing phylogenomic datasets.


2015 ◽  
Vol 33 (3) ◽  
pp. 838-860 ◽  
Author(s):  
Zhenxiang Xi ◽  
Liang Liu ◽  
Charles C. Davis

2016 ◽  
Author(s):  
Mozes P.K. Blom ◽  
Jason G. Bragg ◽  
Sally Potter ◽  
Craig Moritz

AbstractAccurate gene tree inference is an important aspect of species tree estimation in a summary-coalescent framework. Yet, in empirical studies, inferred gene trees differ in accuracy due to stochastic variation in phylogenetic signal between targeted loci. Empiricists should therefore examine the consistency of species tree inference, while accounting for the observed heterogeneity in gene tree resolution of phylogenomic datasets. Here, we assess the impact of gene tree estimation error on summary-coalescent species tree inference by screening ~2000 exonic loci based on gene tree resolution prior to phylogenetic inference. We focus on a phylogenetically challenging radiation of Australian lizards (genus Cryptoblepharus, Scincidae) and explore effects on topology and support. We identify a well-supported topology based on all loci and find that a relatively small number of high-resolution gene trees can be sufficient to converge on the same topology. Adding gene trees with decreasing resolution produced a generally consistent topology, and increased confidence for specific bipartitions that were poorly supported when using a small number of informative loci. This corroborates coalescent-based simulation studies that have highlighted the need for a large number of loci to confidently resolve challenging relationships and refutes the notion that low-resolution gene trees introduce phylogenetic noise. Further, our study also highlights the value of quantifying changes in nodal support across locus subsets of increasing size (but decreasing gene tree resolution). Such detailed analyses can reveal anomalous fluctuations in support at some nodes, suggesting the possibility of model violation. By characterizing the heterogeneity in phylogenetic signal among loci, we can account for uncertainty in gene tree estimation and assess its effect on the consistency of the species tree estimate. We suggest that the evaluation of gene tree resolution should be incorporated in the analysis of empirical phylogenomic datasets. This will ultimately increase our confidence in species tree estimation using summary-coalescent methods and enable us to exploit genomic data for phylogenetic inference.


2015 ◽  
Author(s):  
Nicola De Maio ◽  
Dominik Schrempf ◽  
Carolin Kosiol

Incomplete lineage sorting can cause incongruencies of the overall species-level phylogenetic tree with the phylogenetic trees for individual genes or genomic segments. If these incongruencies are not accounted for, it is possible to incur several biases in species tree estimation. Here, we present a simple maximum likelihood approach that accounts for ancestral variation and incomplete lineage sorting. We use a POlymorphisms-aware phylogenetic MOdel (PoMo) that we have recently shown to efficiently estimate mutation rates and fixation biases from within and between-species variation data. We extend this model to perform efficient estimation of species trees. We test the performance of PoMo in several different scenarios of incomplete lineage sorting using simulations and compare it with existing methods both in accuracy and computational speed. In contrast to other approaches, our model does not use coalescent theory but is allele-frequency based. We show that PoMo is well suited for genome-wide species tree estimation and that on such data it is more accurate than previous approaches.


Author(s):  
Richèl J. C. Bilderbeek ◽  
Giovanni Laudanno ◽  
Rampal S. Etienne

2019 ◽  
Author(s):  
Xiyun Jiao ◽  
Thomas Flouris ◽  
Bruce Rannala ◽  
Ziheng Yang

ABSTRACTRecent analyses of genomic sequence data suggest cross-species gene flow is common in both plants and animals, posing challenges to species tree inference. We examine the levels of gene flow needed to mislead species tree estimation with three species and either episodic introgressive hybridization or continuous migration between an outgroup and one ingroup species. Several species tree estimation methods are examined, including the majority-vote method based on the most common gene tree topology (with either the true or reconstructed gene trees used), the UPGMA method based on the average sequence distances (or average coalescent times) between species, and the full-likelihood method based on multi-locus sequence data. Our results suggest that the majority-vote method is more robust to gene flow than the UPGMA method and both are more robust than likelihood assuming a multispecies coalescent (MSC) model with no cross-species gene flow. A small amount of introgression or migration can mislead species tree methods if the species diverged through speciation events separated by short time intervals. Estimates of parameters under the MSC with gene flow suggest the Anopheles gambia African mosquito species complex is an example where gene flow greatly impacts species phylogeny.


2020 ◽  
Author(s):  
Liming Cai ◽  
Zhenxiang Xi ◽  
Emily Moriarty Lemmon ◽  
Alan R Lemmon ◽  
Austin Mast ◽  
...  

Abstract The genomic revolution offers renewed hope of resolving rapid radiations in the Tree of Life. The development of the multispecies coalescent (MSC) model and improved gene tree estimation methods can better accommodate gene tree heterogeneity caused by incomplete lineage sorting (ILS) and gene tree estimation error stemming from the short internal branches. However, the relative influence of these factors in species tree inference is not well understood. Using anchored hybrid enrichment, we generated a data set including 423 single-copy loci from 64 taxa representing 39 families to infer the species tree of the flowering plant order Malpighiales. This order includes nine of the top ten most unstable nodes in angiosperms, which have been hypothesized to arise from the rapid radiation during the Cretaceous. Here, we show that coalescent-based methods do not resolve the backbone of Malpighiales and concatenation methods yield inconsistent estimations, providing evidence that gene tree heterogeneity is high in this clade. Despite high levels of ILS and gene tree estimation error, our simulations demonstrate that these two factors alone are insufficient to explain the lack of resolution in this order. To explore this further, we examined triplet frequencies among empirical gene trees and discovered some of them deviated significantly from those attributed to ILS and estimation error, suggesting gene flow as an additional and previously unappreciated phenomenon promoting gene tree variation in Malpighiales. Finally, we applied a novel method to quantify the relative contribution of these three primary sources of gene tree heterogeneity and demonstrated that ILS, gene tree estimation error, and gene flow contributed to 10.0%, 34.8%, and 21.4% of the variation, respectively. Together, our results suggest that a perfect storm of factors likely influence this lack of resolution, and further indicate that recalcitrant phylogenetic relationships like the backbone of Malpighiales may be better represented as phylogenetic networks. Thus, reducing such groups solely to existing models that adhere strictly to bifurcating trees greatly oversimplifies reality, and obscures our ability to more clearly discern the process of evolution.


Author(s):  
Gary Sutlieff ◽  
Lucy Berthoud ◽  
Mark Stinchcombe

Abstract CBRN (Chemical, Biological, Radiological, and Nuclear) threats are becoming more prevalent, as more entities gain access to modern weapons and industrial technologies and chemicals. This has produced a need for improvements to modelling, detection, and monitoring of these events. While there are currently no dedicated satellites for CBRN purposes, there are a wide range of possibilities for satellite data to contribute to this field, from atmospheric composition and chemical detection to cloud cover, land mapping, and surface property measurements. This study looks at currently available satellite data, including meteorological data such as wind and cloud profiles, surface properties like temperature and humidity, chemical detection, and sounding. Results of this survey revealed several gaps in the available data, particularly concerning biological and radiological detection. The results also suggest that publicly available satellite data largely does not meet the requirements of spatial resolution, coverage, and latency that CBRN detection requires, outside of providing terrain use and building height data for constructing models. Lastly, the study evaluates upcoming instruments, platforms, and satellite technologies to gauge the impact these developments will have in the near future. Improvements in spatial and temporal resolution as well as latency are already becoming possible, and new instruments will fill in the gaps in detection by imaging a wider range of chemicals and other agents and by collecting new data types. This study shows that with developments coming within the next decade, satellites should begin to provide valuable augmentations to CBRN event detection and monitoring. Article Highlights There is a wide range of existing satellite data in fields that are of interest to CBRN detection and monitoring. The data is mostly of insufficient quality (resolution or latency) for the demanding requirements of CBRN modelling for incident control. Future technologies and platforms will improve resolution and latency, making satellite data more viable in the CBRN management field


Author(s):  
Muhammad Ali Nayeem ◽  
Md. Shamsuzzoha Bayzid ◽  
Sakshar Chakravarty ◽  
Mohammad Saifur Rahman ◽  
M. Sohel Rahman

Sign in / Sign up

Export Citation Format

Share Document