scholarly journals A multi-structural finite element model to simulate atomic force microscopy nanoindentation of single cells

2019 ◽  
Author(s):  
Stefania Marcotti ◽  
Gwendolen C Reilly ◽  
Damien Lacroix

AbstractSingle cell mechanical properties represent an increasingly studied descriptor for health and disease. Atomic force microscopy (AFM) has been widely used to measure single cell stiffness, despite its experimental limitations. The development of a computational framework to simulate AFM nanoindentation experiments could be a valuable tool to complement experimental findings. A single cell multi-structural finite element model was designed to this aim by using confocal images of bone cells, comprised of the cell nucleus, cytoplasm and actin cytoskeleton. The computational cell stiffness values were in the range of experimental values acquired on the same cells for nanoindentation of the cell nucleus and periphery, despite showing higher stiffness for the nucleus than for the periphery, oppositely to the average experimental findings. These results suggest it would be of interest to model different single cells with known experimental effective moduli to evaluate the ability of the computational models to replicate experimental results.

2000 ◽  
Vol 129 (2-3) ◽  
pp. 218-222 ◽  
Author(s):  
Luis F. Jiménez-Garcı́a ◽  
Rogelio Fragoso-Soriano

Scanning ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamed Yassine Amarouch ◽  
Jaouad El Hilaly ◽  
Driss Mazouzi

Atomic force microscopy (AFM) is a widely used imaging technique in material sciences. After becoming a standard surface-imaging tool, AFM has been proven to be useful in addressing several biological issues such as the characterization of cell organelles, quantification of DNA-protein interactions, cell adhesion forces, and electromechanical properties of living cells. AFM technique has undergone many successful improvements since its invention, including fluidic force microscopy (FluidFM), which combines conventional AFM with microchanneled cantilevers for local liquid dispensing. This technology permitted to overcome challenges linked to single-cell analyses. Indeed, FluidFM allows isolation and injection of single cells, force-controlled patch clamping of beating cardiac cells, serial weighting of micro-objects, and single-cell extraction for molecular analyses. This work aims to review the recent studies of AFM implementation in molecular and cellular biology.


2016 ◽  
Vol 138 (36) ◽  
pp. 11664-11671 ◽  
Author(s):  
Hyunseo Koo ◽  
Ikbum Park ◽  
Yoonhee Lee ◽  
Hyun Jin Kim ◽  
Jung Hoon Jung ◽  
...  

2015 ◽  
Vol 12 (104) ◽  
pp. 20140970 ◽  
Author(s):  
Kristina Haase ◽  
Andrew E. Pelling

Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells ‘feel’, we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved.


2016 ◽  
Vol 3 ◽  
pp. 184954351667534 ◽  
Author(s):  
Neerajha Nagarajan ◽  
Varun Vyas ◽  
Bryan D Huey ◽  
Pinar Zorlutuna

The ability to modulate cardiomyocyte contractility is important for bioengineering applications ranging from heart disease treatments to biorobotics. In this study, we examined the changes in contraction frequency of neonatal rat cardiomyocytes upon single-cell-level nanoscale mechanical stimulation using atomic force microscopy. To measure the response of same density of cells, they were micropatterned into micropatches of fixed geometry. To examine the effect of the substrate stiffness on the behavior of cells, they were cultured on a stiffer and a softer surface, glass and poly (dimethylsiloxane), respectively. Upon periodic cyclic stimulation of 300 nN at 5 Hz, a significant reduction in the rate of synchronous contraction of the cell patches on poly(dimethylsiloxane) substrates was observed with respect to their spontaneous beat rate, while the cell patches on glass substrates maintained or increased their contraction rate after the stimulation. On the other hand, single cells mostly maintained their contraction rate and could only withstand a lower magnitude of forces compared to micropatterned cell patches. This study reveals that the contraction behavior of cardiomyocytes can be modulated mechanically through cyclic nanomechanical stimulation, and the degree and mode of this modulation depend on the cell connectivity and substrate mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document