scholarly journals Physical mechanisms of amyloid nucleation on fluid membranes

2019 ◽  
Author(s):  
Johannes Krausser ◽  
Tuomas P. J. Knowles ◽  
Anđela Šarić

Biological membranes can dramatically accelerate the aggregation of normally soluble protein molecules into amyloid fibrils and alter the fibril morphologies, yet the molecular mechanisms through which this accelerated nucleation takes place are not yet understood. Here, we develop a coarse-grained model to systematically explore the effect that the structural properties of the lipid membrane and the nature of protein-membrane interactions have on the nucleation rates of amyloid fibrils. We identify two physically distinct nucleation pathways and quantify how the membrane fluidity and protein-membrane affinity control the relative importance of those molecular pathways. We find that the membrane’s susceptibility to reshaping and being incorporated into the fibrillar aggregates is a key determinant of its ability to promote protein aggregation. We then characterise the rates and the free energy profile associated to this heterogeneous nucleation process in which the surface itself participates in the aggregate structure. Finally, we compare quantitatively our data to experiments on membrane-catalysed amyloid aggregation of α-synuclein, a protein implicated in Parkinson’s disease that predominately nucleates on membranes. More generally, our results provide a framework for understanding macromolecular aggregation on lipid membranes in a broad biological and biotechnological context.

2020 ◽  
Vol 117 (52) ◽  
pp. 33090-33098
Author(s):  
Johannes Krausser ◽  
Tuomas P. J. Knowles ◽  
Anđela Šarić

Biological membranes can dramatically accelerate the aggregation of normally soluble protein molecules into amyloid fibrils and alter the fibril morphologies, yet the molecular mechanisms through which this accelerated nucleation takes place are not yet understood. Here, we develop a coarse-grained model to systematically explore the effect that the structural properties of the lipid membrane and the nature of protein–membrane interactions have on the nucleation rates of amyloid fibrils. We identify two physically distinct nucleation pathways—protein-rich and lipid-rich—and quantify how the membrane fluidity and protein–membrane affinity control the relative importance of those molecular pathways. We find that the membrane’s susceptibility to reshaping and being incorporated into the fibrillar aggregates is a key determinant of its ability to promote protein aggregation. We then characterize the rates and the free-energy profile associated with this heterogeneous nucleation process, in which the surface itself participates in the aggregate structure. Finally, we compare quantitatively our data to experiments on membrane-catalyzed amyloid aggregation of α-synuclein, a protein implicated in Parkinson’s disease that predominately nucleates on membranes. More generally, our results provide a framework for understanding macromolecular aggregation on lipid membranes in a broad biological and biotechnological context.


2013 ◽  
Vol 33 (5) ◽  
Author(s):  
Chi L. L. Pham ◽  
Roberto Cappai

The deposition of α-syn (α-synuclein) as amyloid fibrils and the selective loss of DA (dopamine) containing neurons in the substantia nigra are two key features of PD (Parkinson's disease). α-syn is a natively unfolded protein and adopts an α-helical conformation upon binding to lipid membrane. Oligomeric species of α-syn have been proposed to be the pathogenic species associated with PD because they can bind lipid membranes and disrupt membrane integrity. DA is readily oxidized to generate reactive intermediates and ROS (reactive oxygen species) and in the presence of DA, α-syn form of SDS-resistant soluble oligomers. It is postulated that the formation of the α-syn:DA oligomers involves the cross-linking of DA-melanin with α-syn, via covalent linkage, hydrogen and hydrophobic interactions. We investigate the effect of lipids on DA-induced α-syn oligomerization and studied the ability of α-syn:DA oligomers to interact with lipids vesicles. Our results show that the interaction of α-syn with lipids inhibits the formation of DA-induced α-syn oligomers. Moreover, the α-syn:DA oligomer cannot interact with lipid vesicles or cause membrane permeability. Thus, the formation of α-syn:DA oligomers may alter the actions of α-syn which require membrane association, leading to disruption of its normal cellular function.


2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Teng Ma ◽  
Yuanpeng Liu ◽  
Guochang Lin ◽  
Changguo Wang ◽  
Huifeng Tan

Abstract A fundamental understanding of the interactions between one-dimensional nanomaterials and the cell membrane is of great importance for assessing the hazardous effects of viruses and improving the performance of drug delivery. Here, we propose a finite element-based coarse-grained model to describe the cell entry of nanomaterials based on an absolute nodal coordinate formula and Brownian dynamics. The interactions between nanoparticles and lipid membrane are described by the Lennard–Jones potential, and a contact detection algorithm is used to determine the contact region. Compared with the theoretical and published experimental results, the correctness of the model has been verified. We take two examples to test the robustness of the model: the endocytosis of nanorods grafted with polymer chains and simultaneous entry of multiple nanorods into a lipid membrane. It shows that the model can not only capture the effect of ligand–receptor binding on the penetration but also accurately characterize the cooperative or separate entry of multiple nanorods. This coarse-grained model is computationally highly efficient and will be powerful in combination with molecular dynamics simulations to provide an understanding of cell–nanomaterial interactions.


2018 ◽  
Vol 148 (16) ◽  
pp. 164705 ◽  
Author(s):  
Shuo Feng ◽  
Yucai Hu ◽  
Haiyi Liang

PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0144814 ◽  
Author(s):  
Satyan Sharma ◽  
Brian N. Kim ◽  
Phillip J. Stansfeld ◽  
Mark S. P. Sansom ◽  
Manfred Lindau

1991 ◽  
Vol 11 (3) ◽  
pp. 131-137 ◽  
Author(s):  
S. E. Glushakova ◽  
A. L. Ksenofontov ◽  
N. V. Fedorova ◽  
L. A. Mazhul ◽  
O. N. Ageeva ◽  
...  

A model is proposed for the study of molecular mechanisms of a low pH-induced interaction of fusion proteins of enveloped viruses and cell membranes. The model consists of large monolamellar liposomes containing ionophore nigericin in their membranes and ectodomains of fusion protein in their inner space. The process of interaction of the protein with the lipid bilayer is triggered by acidification of the liposomal constituents to the pH of fusion with the help of nigericin by adding citric acid to the outer medium. To visualize the protein structural reorganization, the tritium planigraphy was used.Comparison of the values of specific labelling of the proteins and distribution of radioactivity in individual amino acids in control (at neutral pH) and experimental liposome samples (at the pH of fusion) permits to realise the character of protein-membrane interaction. We have obtained the first results in the study of interaction of the bromelain-released soluble ectodomain of the HAXX molecule (BHA)—with the lipid membrane. The observed increase in the protein specific activity and selective increase in the specific activity of hydrophobic amino acids Ile, Phe and Tyr in experimental liposome samples as compared with the controls did not contradict to the conventional concept, that a hydrophobic N-terminus of HA2 subunit of hemagglutinin is responsible for its interaction with lipid membranes.


2010 ◽  
Vol 82 (1) ◽  
Author(s):  
Hongyan Yuan ◽  
Changjin Huang ◽  
Ju Li ◽  
George Lykotrafitis ◽  
Sulin Zhang

2021 ◽  
Author(s):  
Fujia Tian ◽  
Xubo Lin

<p>By integrating the advantages of lipids’ biocompatibility and nanobubbles’ potent physicochemical properties, lipid nanobubbles show a great potential in ultrasound molecular imaging and biocompatible drug/gene delivery. However, under the interactions of the ultrasound, lipid nanobubbles may fuse with the cell membrane, changing the local membrane component and re-distributing encapsulated gas molecules into the hydrophobic region of the cell membrane, which may greatly affect the dynamics of certain membrane proteins and thus functions of cells. Although molecular dynamics simulation provides a useful computational tool to reveal the related molecular mechanisms, the lack of coarse-grained gas model greatly restricts this purpose. In the current work, we developed a Martini-compatible coarse-grained gas model based on the results of previous experiments and atomistic simulations, which could be used for lipid nanobubble simulations with complicated lipid components. By comparing the results of well-designed lipid nanobubble, lipid bi-monolayer and lipid bilayer simulations, we further revealed the role of membrane curvature and interleaflet coupling in the liquid-liquid phase separation of lipid membranes. It is worth mention that our developed coarse-grained nitrogen gas model can also be used for other gas-water interface systems such as pulmonary surfactant, which may overcome the possible artefacts arising from the usage of vacuum for gas phase. </p>


Sign in / Sign up

Export Citation Format

Share Document