scholarly journals “Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella in viscous media”

2019 ◽  
Author(s):  
Eli J. Cohen ◽  
Daisuke Nakane ◽  
Yoshiki Kabata ◽  
David R. Hendrixson ◽  
Takayuki Nishizaka ◽  
...  

AbstractCampylobacter jejuni rotates a flagellum at each pole to swim through the viscous mucosa of its hosts’ gastrointestinal tracts. Despite their importance for host colonization, however, how C. jejuni coordinates rotation of these two opposing flagella is unclear. As well as their polar placement, C. jejuni’s flagella deviate from the Enterobacteriaceael norm in other ways: their flagellar motors produce much higher torque and their flagellar filament is made of two different zones of two different flagellins. To understand how C. jejuni’s opposed motors coordinate, and what contribution these factors play in C. jejuni motility, we developed strains with flagella that could be fluorescently labeled, and observed them by high-speed video microscopy. We found that C. jejuni coordinates its dual flagella by wrapping the leading filament around the cell body during swimming in high-viscosity media and that its differentiated flagellar filament has evolved to facilitate this wrapped-mode swimming. Unexpectedly, C. jejuni’s helical body is important for facile unwrapping of the flagellar filament from the cell body during switching of swimming trajectory. Our findings demonstrate how multiple facets of C. jejuni’s flagella and cell plan have co-evolved for optimal motility in high-viscosity environments.

2020 ◽  
Vol 16 (7) ◽  
pp. e1008620 ◽  
Author(s):  
Eli J. Cohen ◽  
Daisuke Nakane ◽  
Yoshiki Kabata ◽  
David R. Hendrixson ◽  
Takayuki Nishizaka ◽  
...  

2019 ◽  
Vol 85 (6) ◽  
pp. 53-63 ◽  
Author(s):  
I. E. Vasil’ev ◽  
Yu. G. Matvienko ◽  
A. V. Pankov ◽  
A. G. Kalinin

The results of using early damage diagnostics technique (developed in the Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN) for detecting the latent damage of an aviation panel made of composite material upon bench tensile tests are presented. We have assessed the capabilities of the developed technique and software regarding damage detection at the early stage of panel loading in conditions of elastic strain of the material using brittle strain-sensitive coating and simultaneous crack detection in the coating with a high-speed video camera “Video-print” and acoustic emission system “A-Line 32D.” When revealing a subsurface defect (a notch of the middle stringer) of the aviation panel, the general concept of damage detection at the early stage of loading in conditions of elastic behavior of the material was also tested in the course of the experiment, as well as the software specially developed for cluster analysis and classification of detected location pulses along with the equipment and software for simultaneous recording of video data flows and arrays of acoustic emission (AE) data. Synchronous recording of video images and AE pulses ensured precise control of the cracking process in the brittle strain-sensitive coating (tensocoating)at all stages of the experiment, whereas the use of structural-phenomenological approach kept track of the main trends in damage accumulation at different structural levels and identify the sources of their origin when classifying recorded AE data arrays. The combined use of oxide tensocoatings and high-speed video recording synchronized with the AE control system, provide the possibility of definite determination of the subsurface defect, reveal the maximum principal strains in the area of crack formation, quantify them and identify the main sources of AE signals upon monitoring the state of the aviation panel under loading P = 90 kN, which is about 12% of the critical load.


2016 ◽  
Vol 11 (1) ◽  
pp. 30-37 ◽  
Author(s):  
A.A. Rakhimov ◽  
A.T. Akhmetov

The paper presents results of hydrodynamic and rheological studies of the inverse water hydrocarbon emulsions. The success of the application of invert emulsions in the petroleum industry due, along with the high viscosity of the emulsion, greatly exceeding the viscosity of the carrier phase, the dynamic blocking effect, which consists in the fact that the rate of flow of emulsions in capillary structures and cracks falls with time to 3-4 orders, despite the permanent pressure drop. The reported study shows an increase in viscosity with increasing concentration or dispersion of emulsion. The increase in dispersion of w/o emulsion leads to an acceleration of the onset of dynamic blocking. The use of microfluidic devices, is made by soft photolithography, along with high-speed photography (10,000 frames/s), allowed us to see in the blocking condition the deformation of the microdroplets of water in inverse emulsion prepared from simple chemical compounds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi-Jen Sun ◽  
Fan Bai ◽  
An-Chi Luo ◽  
Xiang-Yu Zhuang ◽  
Tsai-Shun Lin ◽  
...  

AbstractThe dynamic assembly of the cell wall is key to the maintenance of cell shape during bacterial growth. Here, we present a method for the analysis of Escherichia coli cell wall growth at high spatial and temporal resolution, which is achieved by tracing the movement of fluorescently labeled cell wall-anchored flagellar motors. Using this method, we clearly identify the active and inert zones of cell wall growth during bacterial elongation. Within the active zone, the insertion of newly synthesized peptidoglycan occurs homogeneously in the axial direction without twisting of the cell body. Based on the measured parameters, we formulate a Bernoulli shift map model to predict the partitioning of cell wall-anchored proteins following cell division.


Author(s):  
Hirokazu Takahashi ◽  
Takahiro Murooka ◽  
Kan Toyoshima ◽  
Hitoshi Uematsu ◽  
Tetsuro Fujii

2007 ◽  
Vol 329 ◽  
pp. 761-766 ◽  
Author(s):  
Y. Zhang ◽  
Masato Yoshioka ◽  
Shin-Ichiro Hira

At present, a commercially available magnetic barrel machine equipped with permanent magnets has some faults arising from constructional reason. That is, grinding or finishing ability is different from place to place in the machining region, resulting in the limitation on the region we can use in the container of workpieces. Therefore, in this research, authors made the new magnetic barrel machine equipped with three dimensional (3D) magnet arrangement to overcome these faults. The grinding ability of the new 3D magnetic barrel machine converted was experimentally examined, and compared with that of the traditional magnetic barrel machine. As a result, it was shown that we can use much broader region in the new 3D machine. It was also shown that the grinding ability became higher. The distribution of barrel media in action was recorded by means of a high speed video camera. It was clarified that the media rose up higher and were distributed more uniformly in the container by the effect of the magnet block newly set up. It was supposed that this must be the reason for the above-mentioned improvement of grinding ability.


Sign in / Sign up

Export Citation Format

Share Document