scholarly journals Inhibition of DNAJ-HSP70 interaction improves strength in muscular dystrophy

2020 ◽  
Author(s):  
Rocio Bengoechea ◽  
Andrew Findlay ◽  
Ankan Bhadra ◽  
Hao Shao ◽  
Kevin Stein ◽  
...  

AbstractDominant mutations in the HSP70 co-chaperone DNAJB6 cause a late onset muscle disease termed limb girdle muscular dystrophy type 1D (LGMD1D), which is characterized by protein aggregation and vacuolar myopathology. Disease mutations reside within the G/F domain of DNAJB6, but the molecular mechanisms underlying dysfunction are not well understood. Using yeast, cell culture, and mouse models of LGMD1D, we find that the toxicity associated with disease-associated DNAJB6 requires its interaction with HSP70, and that abrogating this interaction genetically or with small molecules is protective. In skeletal muscle, DNAJB6 localizes to the Z-disc with HSP70. Whereas HSP70 normally diffuses rapidly between the Z-disc and sarcoplasm, the rate of HSP70’s diffusion in LGMD1D mouse muscle is diminished likely because it has an unusual affinity for the Z-disc and mutant DNAJB6. Treating LGMD1D mice with a small molecule inhibitor of the DNAJ-HSP70 complex re-mobilizes HSP70, improves strength and corrects myopathology. These data support a model in which LGMD1D mutations in DNAJB6 are a gain-of-function disease that is, counter-intuitively, mediated via HSP70 binding. Thus, therapeutic approaches targeting HSP70:DNAJB6 may be effective in treating this inherited muscular dystrophy.

1963 ◽  
Vol 205 (5) ◽  
pp. 897-901 ◽  
Author(s):  
Marilyn W. McCaman

The activities of 20 enzymes in normal, heterozygous, and dystrophic mouse muscle were studied by means of quantitative microchemical methods. Enzyme activities in normal and heterozygous muscle were essentially the same. In dystrophic muscle glucose-6-P dehydrogenase, 6-P-gluconic dehydrogenase, glutathione reductase, peptidase, ß-glucuronidase, and glucokinase activities were significantly higher than in normal muscle, while α-glycero-P dehydrogenase and lactic dehydrogenase activities were significantly lower. The pattern of enzyme activities found in normal gastrocnemius denervated by nerve section was strikingly similar to that in dystrophic muscle.


2009 ◽  
Vol 20 (1) ◽  
pp. 146-152 ◽  
Author(s):  
Michelle S. Steen ◽  
Marvin E. Adams ◽  
Yan Tesch ◽  
Stanley C. Froehner

Duchenne muscular dystrophy (DMD) and other types of muscular dystrophies are caused by the loss or alteration of different members of the dystrophin protein complex. Understanding the molecular mechanisms by which dystrophin-associated protein abnormalities contribute to the onset of muscular dystrophy may identify new therapeutic approaches to these human disorders. By examining gene expression alterations in mouse skeletal muscle lacking α-dystrobrevin (Dtna−/−), we identified a highly significant reduction of the cholesterol trafficking protein, Niemann-Pick C1 (NPC1). Mutations in NPC1 cause a progressive neurodegenerative, lysosomal storage disorder. Transgenic expression of NPC1 in skeletal muscle ameliorates muscular dystrophy in the Dtna−/− mouse (which has a relatively mild dystrophic phenotype) and in the mdx mouse, a model for DMD. These results identify a new compensatory gene for muscular dystrophy and reveal a potential new therapeutic target for DMD.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2033
Author(s):  
Antonio Musarò

The capacity of adult muscle to regenerate in response to injury stimuli represents an important homeostatic process. Regeneration is a highly coordinated program that partially recapitulates the embryonic developmental program and involves the activation of the muscle compartment of stem cells, namely satellite cells, as well as other precursor cells, whose activity is strictly dependent on environmental signals. However, muscle regeneration is severely compromised in several pathological conditions due to either the progressive loss of stem cell populations or to missing signals that limit the damaged tissues from efficiently activating a regenerative program. It is, therefore, plausible that the loss of control over these cells’ fate might lead to pathological cell differentiation, limiting the ability of a pathological muscle to sustain an efficient regenerative process. This Special Issue aims to bring together a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration and to suggest potential therapeutic approaches for degenerating muscle disease.


2013 ◽  
Vol 203 (2) ◽  
pp. 205-213 ◽  
Author(s):  
Sarah Oddoux ◽  
Kristien J. Zaal ◽  
Victoria Tate ◽  
Aster Kenea ◽  
Shuktika A. Nandkeolyar ◽  
...  

Skeletal muscle microtubules (MTs) form a nonclassic grid-like network, which has so far been documented in static images only. We have now observed and analyzed dynamics of GFP constructs of MT and Golgi markers in single live fibers and in the whole mouse muscle in vivo. Using confocal, intravital, and superresolution microscopy, we find that muscle MTs are dynamic, growing at the typical speed of ∼9 µm/min, and forming small bundles that build a durable network. We also show that static Golgi elements, associated with the MT-organizing center proteins γ-tubulin and pericentrin, are major sites of muscle MT nucleation, in addition to the previously identified sites (i.e., nuclear membranes). These data give us a framework for understanding how muscle MTs organize and how they contribute to the pathology of muscle diseases such as Duchenne muscular dystrophy.


2019 ◽  
Author(s):  
Douglas W Van Pelt ◽  
Yalda A Kharaz ◽  
Dylan C Sarver ◽  
Logan R Eckhardt ◽  
Justin T Dzierzawski ◽  
...  

AbstractDuchenne muscular dystrophy (DMD) is a progressive neuromuscular disease characterized by extensive muscle weakness. Patients with DMD lack a functional dystrophin protein, which transmits force and organizes the cytoskeleton of skeletal muscle. Multiomic studies evaluate combined changes in the transcriptome, proteome, and metabolome, and have been proposed as a way to obtain novel insight about disease processes from preclinical models. We therefore sought to use this approach to study pathological changes in dystrophic muscles. We evaluated hindlimb muscles of male mdx/mTR mice, which lack a functional dystrophin protein and have deficits in satellite cell abundance and proliferative capacity. Wild type (WT) C57BL/6J mice served as controls. Muscle fiber contractility was measured, along with changes in the transcriptome using RNA sequencing, and in the proteome, metabolome, and lipidome using mass spectroscopy. While mdx/mTR mice displayed gross pathological changes and continued cycles of degeneration and regeneration, we found no differences in fiber contractility between strains. However, there were numerous changes in the transcriptome and proteome related to protein balance, contractile elements, extracellular matrix, and metabolism. There was only a 53% agreement in fold change data between the proteome and transcriptome, highlighting the need to study protein abundance along with gene expression measures. Numerous changes in markers of skeletal muscle metabolism were observed, with dystrophic muscles exhibiting elevated glycolytic metabolites. These findings highlight the utility of multiomics in studying muscle disease, and provide additional insight into the pathological changes in dystrophic muscles that might help to guide evidence-based exercise prescription in DMD patients.


2012 ◽  
Vol 303 (1) ◽  
pp. E1-E17 ◽  
Author(s):  
Rebecca Berdeaux ◽  
Randi Stewart

Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.


2003 ◽  
Vol 14 (10) ◽  
pp. 4075-4088 ◽  
Author(s):  
Daniela Volonte ◽  
Aaron J. Peoples ◽  
Ferruccio Galbiati

Caveolae are vesicular invaginations of the plasma membrane. Caveolin-3 is the principal structural component of caveolae in skeletal muscle cells in vivo. We have recently generated caveolin-3 transgenic mice and demonstrated that overexpression of wild-type caveolin-3 in skeletal muscle fibers is sufficient to induce a Duchenne-like muscular dystrophy phenotype. In addition, we have shown that caveolin-3 null mice display mild muscle fiber degeneration and T-tubule system abnormalities. These data are consistent with the mild phenotype observed in Limb-girdle muscular dystrophy-1C (LGMD-1C) in humans, characterized by a ∼95% reduction of caveolin-3 expression. Thus, caveolin-3 transgenic and null mice represent valid mouse models to study Duchenne muscular dystrophy (DMD) and LGMD-1C, respectively, in humans. Here, we derived conditionally immortalized precursor skeletal muscle cells from caveolin-3 transgenic and null mice. We show that overexpression of caveolin-3 inhibits myoblast fusion to multinucleated myotubes and lack of caveolin-3 enhances the fusion process. M-cadherin and microtubules have been proposed to mediate the fusion of myoblasts to myotubes. Interestingly, we show that M-cadherin is downregulated in caveolin-3 transgenic cells and upregulated in caveolin-3 null cells. For the first time, variations of M-cadherin expression have been linked to a muscular dystrophy phenotype. In addition, we demonstrate that microtubules are disorganized in caveolin-3 null myotubes, indicating the importance of the cytoskeleton network in mediating the phenotype observed in these cells. Taken together, these results propose caveolin-3 as a key player in myoblast fusion and suggest that defects of the fusion process may represent additional molecular mechanisms underlying the pathogenesis of DMD and LGMD-1C in humans.


2020 ◽  
Author(s):  
Gist H. Farr ◽  
Melanie Morris ◽  
Arianna Gomez ◽  
Thao Pham ◽  
Elizabeth U. Parker ◽  
...  

SummaryDuchenne muscular dystrophy (DMD) is a severe neuromuscular disorder and is one of the most common muscular dystrophies. There are currently few effective therapies to treat the disease, although many small-molecule approaches are being pursued. Specific histone deacetylase inhibitors (HDACi) can ameliorate DMD phenotypes in mouse and zebrafish animal models and have also shown promise for DMD in clinical trials. However, beyond these HDACi, other classes of epigenetic small molecules have not been broadly and systematically studied for their benefits for DMD. Here, we performed a novel chemical screen of a library of epigenetic compounds using the zebrafish dmd model. We identified candidate pools of epigenetic compounds that improve skeletal muscle structure in dmd zebrafish. We then identified a specific combination of two drugs, oxamflatin and salermide, that significantly rescued dmd zebrafish skeletal muscle degeneration. Furthermore, we validated the effects of oxamflatin and salermide in an independent laboratory. Our results provide novel, effective methods for performing a combination small-molecule screen in zebrafish. Our results also add to the growing evidence that epigenetic small molecules may be promising candidates for treating DMD.


2021 ◽  
Author(s):  
Takaya Hirata ◽  
Shiro Baba ◽  
Kentaro Akagi ◽  
Daisuke Yoshinaga ◽  
Katsutsugu Umeda ◽  
...  

Abstract Background: Duchenne muscular dystrophy (DMD), a severe degenerative skeletal and cardiac muscle disease, has a poor prognosis, and no curative treatments are available. Because autophagy has been reported to contribute to skeletal muscle degeneration, therapies targeting autophagy are expected to improve skeletal muscle hypofunction. However, the role of this regulatory mechanism has not been evaluated clearly in DMD cardiomyocytes. Methods: In the present study, we demonstrated that autophagy was enhanced in the cardiomyocytes of mdx mice, a model of DMD, and that increased autophagy contributed to the development of cardiomyopathy in this context. Results: As assessed by GFP-mRFP-LC3 transfection, autophagosomes were more abundant in cardiomyocytes of mdx mice compared with control wild-type (WT) mice. The number of autophagosomes was significantly enhanced by isoproterenol-induced cardiac stress (4 weeks) in cardiomyocytes of mdx but not WT mice. Simultaneously, isoproterenol increased cardiomyocyte fibrosis in mdx but not WT mice. Administration of chloroquine, an autophagy inhibitor, significantly decreased cardiomyocyte autophagy and fibrosis in mdx mice, even after isoproterenol treatment. Left ventricle size and function were evaluated by echocardiography. Left ventricular contraction was decreased in mdx mice after isoproterenol treatment compared with control mice, which was alleviated by chloroquine administration.Conclusions: These findings suggested that heart failure of DMD could be associated with autophagy. Therefore, autophagy inhibitors, such as chloroquine, are a potential therapeutic modality for heart failure in DMD patients.


Sign in / Sign up

Export Citation Format

Share Document