scholarly journals Multiomics Analysis of the mdx/mTR Mouse Model of Duchenne Muscular Dystrophy

2019 ◽  
Author(s):  
Douglas W Van Pelt ◽  
Yalda A Kharaz ◽  
Dylan C Sarver ◽  
Logan R Eckhardt ◽  
Justin T Dzierzawski ◽  
...  

AbstractDuchenne muscular dystrophy (DMD) is a progressive neuromuscular disease characterized by extensive muscle weakness. Patients with DMD lack a functional dystrophin protein, which transmits force and organizes the cytoskeleton of skeletal muscle. Multiomic studies evaluate combined changes in the transcriptome, proteome, and metabolome, and have been proposed as a way to obtain novel insight about disease processes from preclinical models. We therefore sought to use this approach to study pathological changes in dystrophic muscles. We evaluated hindlimb muscles of male mdx/mTR mice, which lack a functional dystrophin protein and have deficits in satellite cell abundance and proliferative capacity. Wild type (WT) C57BL/6J mice served as controls. Muscle fiber contractility was measured, along with changes in the transcriptome using RNA sequencing, and in the proteome, metabolome, and lipidome using mass spectroscopy. While mdx/mTR mice displayed gross pathological changes and continued cycles of degeneration and regeneration, we found no differences in fiber contractility between strains. However, there were numerous changes in the transcriptome and proteome related to protein balance, contractile elements, extracellular matrix, and metabolism. There was only a 53% agreement in fold change data between the proteome and transcriptome, highlighting the need to study protein abundance along with gene expression measures. Numerous changes in markers of skeletal muscle metabolism were observed, with dystrophic muscles exhibiting elevated glycolytic metabolites. These findings highlight the utility of multiomics in studying muscle disease, and provide additional insight into the pathological changes in dystrophic muscles that might help to guide evidence-based exercise prescription in DMD patients.

2019 ◽  
Vol 8 ◽  
pp. 204800401987958
Author(s):  
HR Spaulding ◽  
C Ballmann ◽  
JC Quindry ◽  
MB Hudson ◽  
JT Selsby

Background Duchenne muscular dystrophy is a muscle wasting disease caused by dystrophin gene mutations resulting in dysfunctional dystrophin protein. Autophagy, a proteolytic process, is impaired in dystrophic skeletal muscle though little is known about the effect of dystrophin deficiency on autophagy in cardiac muscle. We hypothesized that with disease progression autophagy would become increasingly dysfunctional based upon indirect autophagic markers. Methods Markers of autophagy were measured by western blot in 7-week-old and 17-month-old control (C57) and dystrophic (mdx) hearts. Results Counter to our hypothesis, markers of autophagy were similar between groups. Given these surprising results, two independent experiments were conducted using 14-month-old mdx mice or 10-month-old mdx/Utrn± mice, a more severe model of Duchenne muscular dystrophy. Data from these animals suggest increased autophagosome degradation. Conclusion Together these data suggest that autophagy is not impaired in the dystrophic myocardium as it is in dystrophic skeletal muscle and that disease progression and related injury is independent of autophagic dysfunction.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 648
Author(s):  
Andrea L. Reid ◽  
Matthew S. Alexander

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.


1970 ◽  
pp. 36-39
Author(s):  
M Robed Amin ◽  
Chowdhury Chironjib Borua ◽  
Kaji Shafiqul Alam ◽  
Fazle Rabbi Chowdhury ◽  
Rabiul Jahan Sarkar ◽  
...  

Progressive muscular weakness with deformity leading to crippled states develop due to musculoskeletal and neurological disorders. Sometimes it is difficult to differentiate between primary muscle disease and neurological disease. But there is some classical presentation of muscle diseases which have its own entity and thus can be clinically differentiated from neurological disorder especially spinal cord and motor neuron diseases. Muscular dystrophy is one of those disorder with distinct clinical features. Muscular dystrophy refers to a group of genetic, hereditary muscle diseases that cause progressive muscle weakness. Most types of MD are multi-system disorders with manifestations in body systems including skeletal system, the heart, gastrointestinal and nervous systems, endocrine glands, skin, eyes and other organs. Duchenne muscular dystrophy (DMD), is inherited in an X-linked recessive pattern, meaning that the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes, and is thus considered sex-linked. Males are therefore affected by X-linked recessive disorders much more often than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. Duchenne muscular dystrophy and Backers muscular dystrophy are caused by mutations of the gene for the dystrophin protein and lead to an overabundance of the enzyme creatine kinase. The dystrophin gene is the largest gene in humans. In this case series a family with three brothers suffering from Duchenne muscular dystrophy is described and review with literature was done.   doi:10.3329/jom.v10i3.2015 J Medicine 2009; 10 (Supplement 1): 36-39


2012 ◽  
Vol 24 (1) ◽  
pp. 231 ◽  
Author(s):  
N. Klymiuk ◽  
C. Thirion ◽  
K. Burkhardt ◽  
A. Wuensch ◽  
S. Krause ◽  
...  

Duchenne muscular dystrophy (DMD) is one of the most common genetic diseases in humans, affecting 1 in 3500 boys. It is characterised by progressive muscle weakness and wasting due to mutations in the dystrophin (DMD) gene resulting in absence of dystrophin protein in skeletal muscle. Although curative treatments are currently not available, genetic and pharmacological approaches are under investigation including early-phase clinical trials. Existing animal models in different species (e.g. mdx mouse, GRMD dog) have been instrumental to understand the pathophysiology of DMD, but have several limitations. Importantly, the causative point mutations (mdx mouse: nonsense mutation; GRMD dog: splice mutation) are different from the most common human mutations (out-of-frame deletion of one or several exons of the DMD gene). We used gene targeting in somatic cells and nuclear transfer to generate a genetically tailored pig model of DMD. A bacterial artificial chromosome (BAC) from the porcine DMD gene was modified by recombineering to replace exon 52, resulting in a frame shift in the transcript. Modified BAC were transfected into male neonatal kidney cells, which were screened by quantitative polymerase chain reaction for replacement of exon 52 in the X-linked DMD gene. Eight of 436 cell clones were successfully targeted and 2 of them were used for nuclear transfer. For each of the cell clones, a pregnancy was established by transfer of cloned embryos into recipient gilts. Four piglets of the first litter were live born and killed within 48 h and tissue samples were processed for histological characterisation. Two piglets of the second litter died during birth due to obstetric complications, whereas the other 2 piglets were delivered by Caesarean section and raised in an artificial feeding system. Their serum creatine kinase (CK) levels were grossly elevated. Although both piglets showed reduced mobility compared with age-matched controls, they were able to move and feed on their own. Immunofluorescence staining of dystrophin was negative in muscle fibres of DMD mutant piglets and the complete absence of dystrophin protein was confirmed by immunoblot analysis. Histological examination of biceps femoris muscle from DMD mutant pigs showed a degenerative myopathy with fibre size variation, rounded fibres, central nuclei, fibrosis and fatty replacement of muscle tissue mimicking the hallmarks of the human disease. In conclusion, we generated the first pig model for a genetic muscle disease. The DMD mutant pig appears to be a bona fide model of the human dystrophy as ascertained by absence of the dystrophin protein, elevated serum CK levels and early degenerative changes on muscle histology. Because deletion of exon 52 is one of the most frequent mutations found in human DMD, the exon 52 mutated DMD pig represents an excellent model for testing targeted genetic treatments. This study was supported by the Bayerische Forschungsstiftung.


2019 ◽  
Author(s):  
◽  
Michael Everette Nance

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Duchenne muscular dystrophy (DMD) is a lethal muscular dystrophy resulting from functional loss of the dystrophin protein, a critical sub-sarcolemmal protein involved in membrane stability. While reparative dysfunction is thought to be a critical determinant of disease progression in humans, regeneration is not significantly impaired in the murine muscular dystrophy (mdx) model. Furthermore, it is not well understood if reparative dysfunction is related to inherent defects in stem cells or chronic alterations in the muscle environment due to disease related remodeling. To address these observed discrepancies, we adapted a whole muscle transplant model to study the in vivo regeneration of intact pieces of skeletal muscle from normal and dystrophic dogs (cDMD), a physiological and clinically relevant model to humans. Regeneration in cDMD muscle grafts was significantly attenuated compared to normal and predisposed to the development of skeletal muscle tumors. We used an adeno-associated virus (AAV) expressing a micro-dystrophin protein to specifically rescue the muscle environment by preventing fiber damage while retaining dystrophin-null SCs. AAV.micro-dystrophin rescued the environment by improving fibrosis, stiffness, and fiber orientation, which significantly improved early muscle regeneration but not late regeneration (2 greater than and less than 4 months post-transplant) via enhancing muscle stem cells differentiation. We next developed Cre- and CRISPR-cas9 gene editing strategies to test the ability of AAV serotype 9 to transduce and treat the genetic mutation in muscle stem cells. We observed efficient SC transduction when used as a single vector expressing Cre. Dual-vector CRISPR-cas9 SC transduction was inefficient and likely related to the requirement for two vectors, promoter usage, and mechanistic differences between Cre-recombination and CRISPR genome editing.


Author(s):  
Sandrine Herbelet ◽  
Arthur Rodenbach

In Duchenne muscular dystrophy (DMD), the activation of proinflammatory and metabolic cellular pathways in skeletal muscle cells is an inherent characteristic. Synthetic glucocorticoid intake counteracts the majority of these mechanisms. However, glucocorticoids induce burdensome secondary effects, including hypertension, arrhythmias, hyperglycemia, osteoporosis, weight gain, growth delay, skin thinning, cushingoid appearance, and tissue-specific glucocorticoid resistance. Hence, lowering the glucocorticoid dosage could be beneficial for DMD patients. A more profound insight into the major cellular pathways that are stabilized after synthetic glucocorticoid administration in DMD is needed when searching for the molecules able to achieve similar pathway stabilization. This review provides a concise overview of the major anti-inflammatory pathways, as well as the metabolic effects of glucocorticoids in the skeletal muscle affected in DMD. The known drugs able to stabilize these pathways, and which could potentially be combined with glucocorticoid therapy as steroid-sparing agents, are described. This could create new opportunities for testing in DMD animal models and/or clinical trials, possibly leading to smaller glucocorticoids dosage regimens for DMD patients.


2021 ◽  
Author(s):  
Takaya Hirata ◽  
Shiro Baba ◽  
Kentaro Akagi ◽  
Daisuke Yoshinaga ◽  
Katsutsugu Umeda ◽  
...  

Abstract Background: Duchenne muscular dystrophy (DMD), a severe degenerative skeletal and cardiac muscle disease, has a poor prognosis, and no curative treatments are available. Because autophagy has been reported to contribute to skeletal muscle degeneration, therapies targeting autophagy are expected to improve skeletal muscle hypofunction. However, the role of this regulatory mechanism has not been evaluated clearly in DMD cardiomyocytes. Methods: In the present study, we demonstrated that autophagy was enhanced in the cardiomyocytes of mdx mice, a model of DMD, and that increased autophagy contributed to the development of cardiomyopathy in this context. Results: As assessed by GFP-mRFP-LC3 transfection, autophagosomes were more abundant in cardiomyocytes of mdx mice compared with control wild-type (WT) mice. The number of autophagosomes was significantly enhanced by isoproterenol-induced cardiac stress (4 weeks) in cardiomyocytes of mdx but not WT mice. Simultaneously, isoproterenol increased cardiomyocyte fibrosis in mdx but not WT mice. Administration of chloroquine, an autophagy inhibitor, significantly decreased cardiomyocyte autophagy and fibrosis in mdx mice, even after isoproterenol treatment. Left ventricle size and function were evaluated by echocardiography. Left ventricular contraction was decreased in mdx mice after isoproterenol treatment compared with control mice, which was alleviated by chloroquine administration.Conclusions: These findings suggested that heart failure of DMD could be associated with autophagy. Therefore, autophagy inhibitors, such as chloroquine, are a potential therapeutic modality for heart failure in DMD patients.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Boel De Paepe ◽  
Jan L. De Bleecker

Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed.


Sign in / Sign up

Export Citation Format

Share Document