scholarly journals CRL5-dependent regulation of Arl4c and Arf6 controls hippocampal morphogenesis

2020 ◽  
Author(s):  
Jisoo S. Han ◽  
Keiko Hino ◽  
Raenier V. Reyes ◽  
Cesar P. Canales ◽  
Adam M. Miltner ◽  
...  

SummaryThe small GTPase Arl4c participates in the regulation of cell migration, cytoskeletal rearrangements, and vesicular trafficking in epithelial cells. The Arl4c signaling cascade starts by the recruitment of the Arf-GEF cytohesins to the plasma membrane, which in turn engage the small GTPase Arf6. In the nervous system, Arf6 regulates dendrite outgrowth in vitro and neuronal migration in the developing cortex. However, the role of Arl4c-cytohesin-Arf6 signaling during brain development and particularly during hippocampal development remain elusive. Here, we report that the E3 ubiquitin ligase Cullin 5/Rbx2 (CRL5) controls the stability of Arl4c and its signaling effectors to regulate hippocampal morphogenesis. Rbx2 knock out causes hippocampal pyramidal neuron mislocalization and formation of multiple apical dendrites. The same phenotypes were observed when Cullin 5 was knocked down in pyramidal neurons by in utero electroporation. We used quantitative mass spectrometry to show that Arl4c, Cytohesin-1/3, and Arf6 accumulate in the telencephalon when Rbx2 is absent. Arl4c expression is post-transcriptionally regulated, with a peak in expression at early postnatal stages, and is localized at the plasma membrane and on intracellular vesicles in hippocampal pyramidal neurons. Furthermore, we show that depletion of Arl4c rescues the phenotypes caused by Cullin 5 knock down in the hippocampus, whereas depletion of Arf6 exacerbates over-migration. Finally, we show that Arl4c and Arf6 are necessary for the dendritic outgrowth of pyramidal neurons to the most superficial strata of the hippocampus. Overall, we identified CRL5 as a key regulator of hippocampal development and uncovered Arl4c and Arf6 as novel CRL5-regulated signaling effectors that control pyramidal neuron migration and dendritogenesis.

2020 ◽  
Vol 117 (37) ◽  
pp. 23073-23084
Author(s):  
Jisoo S. Han ◽  
Keiko Hino ◽  
Wenzhe Li ◽  
Raenier V. Reyes ◽  
Cesar P. Canales ◽  
...  

The small GTPase ARL4C participates in the regulation of cell migration, cytoskeletal rearrangements, and vesicular trafficking in epithelial cells. The ARL4C signaling cascade starts by the recruitment of the ARF–GEF cytohesins to the plasma membrane, which, in turn, bind and activate the small GTPase ARF6. However, the role of ARL4C–cytohesin–ARF6 signaling during hippocampal development remains elusive. Here, we report that the E3 ubiquitin ligase Cullin 5/RBX2 (CRL5) controls the stability of ARL4C and its signaling effectors to regulate hippocampal morphogenesis. Both RBX2 knockout and Cullin 5 knockdown cause hippocampal pyramidal neuron mislocalization and development of multiple apical dendrites. We used quantitative mass spectrometry to show that ARL4C, Cytohesin-1/3, and ARF6 accumulate in the RBX2 mutant telencephalon. Furthermore, we show that depletion of ARL4C rescues the phenotypes caused by Cullin 5 knockdown, whereas depletion of CYTH1 or ARF6 exacerbates overmigration. Finally, we show that ARL4C, CYTH1, and ARF6 are necessary for the dendritic outgrowth of pyramidal neurons to the superficial strata of the hippocampus. Overall, we identified CRL5 as a key regulator of hippocampal development and uncovered ARL4C, CYTH1, and ARF6 as CRL5-regulated signaling effectors that control pyramidal neuron migration and dendritogenesis.


2000 ◽  
Vol 11 (9) ◽  
pp. 3155-3168 ◽  
Author(s):  
Brandon M. Sullivan ◽  
Kimberly J. Harrison-Lavoie ◽  
Vladimir Marshansky ◽  
Herbert Y. Lin ◽  
John H. Kehrl ◽  
...  

COPI, a protein complex consisting of coatomer and the small GTPase ARF1, is an integral component of some intracellular transport carriers. The association of COPI with secretory membranes has been implicated in the maintenance of Golgi integrity and the normal functioning of intracellular transport in eukaryotes. The regulator of G protein signaling, RGS4, interacted with the COPI subunit β′-COP in a yeast two-hybrid screen. Both recombinant RGS4 and RGS2 bound purified recombinant β′-COP in vitro. Endogenous cytosolic RGS4 from NG108 cells and RGS2 from HEK293T cells cofractionated with the COPI complex by gel filtration. Binding of β′-COP to RGS4 occurred through two dilysine motifs in RGS4, similar to those contained in some aminoglycoside antibiotics that are known to bind coatomer. RGS4 inhibited COPI binding to Golgi membranes independently of its GTPase-accelerating activity on Giα. In RGS4-transfected LLC-PK1 cells, the amount of COPI in the Golgi region was considerably reduced compared with that in wild-type cells, but there was no detectable difference in the amount of either Golgi-associated ARF1 or the integral Golgi membrane protein giantin, indicating that Golgi integrity was preserved. In addition, RGS4 expression inhibited trafficking of aquaporin 1 to the plasma membrane in LLC-PK1 cells and impaired secretion of placental alkaline phosphatase from HEK293T cells. The inhibitory effect of RGS4 in these assays was independent of GTPase-accelerating activity but correlated with its ability to bind COPI. Thus, these data support the hypothesis that these RGS proteins sequester coatomer in the cytoplasm and inhibit its recruitment onto Golgi membranes, which may in turn modulate Golgi–plasma membrane or intra-Golgi transport.


2001 ◽  
Vol 85 (1) ◽  
pp. 319-322 ◽  
Author(s):  
John M. Power ◽  
M. Mathew Oh ◽  
John F. Disterhoft

Metrifonate, a cholinesterase inhibitor, has been shown to enhance learning in aging rabbits and rats, and to alleviate the cognitive deficits observed in Alzheimer's disease patients. We have previously determined that bath application of metrifonate reduces the spike frequency adaptation and postburst afterhyperpolarization (AHP) in rabbit CA1 pyramidal neurons in vitro using sharp electrode current-clamp recording. The postburst AHP and accommodation observed in current clamp are the result of four slow outward potassium currents (s I AHP, I AHP, I M, and I C) and the hyperpolarization activated mixed cation current, I h. We recorded from visually identified CA1 hippocampal pyramidal neurons in vitro using whole cell voltage-clamp technique to better isolate and characterize which component currents of the AHP are affected by metrifonate. We observed an age-related enhancement of the slow component of the AHP tail current (s I AHP), but not of the fast decaying component of the AHP tail current ( I AHP, I M, and I C). Bath perfusion of metrifonate reduced s I AHP at concentrations that cause a reduction of the AHP and accommodation in current-clamp recordings, with no apparent reduction of I AHP, I M, and I C. The functional consequences of metrifonate administration are apparently mediated solely through modulation of the s I AHP.


2011 ◽  
Vol 286 (41) ◽  
pp. 35933-35942 ◽  
Author(s):  
Chang Xie ◽  
Na Li ◽  
Zheng-Jun Chen ◽  
Bo-Liang Li ◽  
Bao-Liang Song

Niemann-Pick C1-like 1 (NPC1L1) is a multi-transmembrane protein that mediates the absorption of dietary and biliary cholesterol through vesicular endocytosis. The subcellular localization of NPC1L1 is regulated by cholesterol. Cholesterol depletion induces the transport of NPC1L1 to plasma membrane (PM) from endocytic recycling compartment that requires MyoVb·Rab11a·Rab11-FIP2 triple complex, and cholesterol-replenishment renders the internalization of NPC1L1 together with cholesterol. Here, we find that GTP-bound Cdc42 interacts with NPC1L1. Cholesterol depletion regulates the activation of Cdc42 and enhances NPC1L1-Cdc42 interaction. Overexpression of constitutive GTP-bound Cdc42 mutant form or knockdown of Cdc42 inhibits the transport of NPC1L1 to the PM and disturbs the cholesterol-regulated binding of NPC1L1 to Rab11a, MyoVb, and actin. Knockdown of Cdc42 downstream effectors N-WASP or Arp3 also leads to the similar results. In liver-specific Cdc42 knock-out (Cdc42 LKO) mice, NPC1L1 fails to localize to bile canaliculi, and the biliary cholesterol cannot be efficiently reabsorbed. These results indicate that Cdc42 controls the cholesterol-regulated transport and localization of NPC1L1, and plays a role in cholesterol absorption.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 318-318
Author(s):  
Brendan J. Quinn ◽  
Athar H. Chishti

Abstract Erythrocyte p55 is a prototypical member of a family of scaffolding proteins known as Membrane Associated Guanylate Kinase Homologues (MAGUKs). MAGUKs are multi-domain proteins that couple signals from specialized sites at the plasma membrane to intracellular signal transduction pathways and the cytoskeleton. P55 was originally identified in the erythrocytes as part of a ternary complex with protein 4.1R and glycophorin C, providing a critical linkage between the actin cytoskeleton and the plasma membrane. Although p55 is expressed in a variety of tissues, especially hematopoietic cells, its biological function is unclear. Here, using a p55 knockout mouse model, we show that p55 plays a prominent role in the regulation of neutrophil polarization. Neutrophils are the first respondents during infection and injury, adopting a highly polarized morphology when stimulated with chemotactic factors. G proteincoupled surface receptors recognize the external chemotactic gradient and translate it into an internal gradient of signaling molecules. At the front of the cell, accumulation of the lipid product phosphatidylinositol-3,4,5-trisphosphate (PIP3), activation of the small GTPase Rac, and polymerization of F-actin stimulates a positive feedback loop promoting pseudopod formation. Here, we show that neutrophils lacking p55 form multiple transient pseudopods at the sides and back of the cell upon stimulation. P55 is required for limiting the pseudopod in the direction of chemoattractant. As a result, these neutrophils do not migrate efficiently up a chemotactic gradient in vitro. Biochemical analysis indicates that total F-actin polymerization and total Rac activation is similar between wild type and p55 knockout neutrophils. However, we found that phosphorylation of AKT, the major kinase downstream of the phosphatidylinositol 3-kinase (PI3K)-PIP3 pathway, is almost completely blocked in p55 knockout neutrophils. This finding suggests that p55 exerts its functional effect by regulating PIP3 accumulation or its localization at the membrane, which is responsible for amplification of the frontness signal and stability of the leading edge pseudopod. Consistent with this finding, the p55 null mice are significantly more susceptible to spontaneous and induced infections. Taken together, we have identified p55 as a novel mediator of the frontness signal in neutrophils that promotes polarization and efficient chemotaxis.


2004 ◽  
Vol 15 (11) ◽  
pp. 5021-5037 ◽  
Author(s):  
Mark Trautwein ◽  
Jörn Dengjel ◽  
Markus Schirle ◽  
Anne Spang

The small GTPase Arf1p is involved in different cellular processes that require its accumulation at specific cellular locations. The recruitment of Arf1p to distinct points of action might be achieved by association of Arf1p with different proteins. To identify new interactors of Arf1p, we performed an affinity chromatography with GTP- or GDP-bound Arf1p proteins. A new interactor of Arf1p-GTP was identified as Pab1p, which binds to the polyA-tail of mRNAs. Pab1p was found to associate with purified COPI-coated vesicles generated from Golgi membranes in vitro. The stability of the Pab1p–Arf1p complex depends on the presence of mRNA. Both symmetrically distributed mRNAs as well as the asymmetrically localized ASH1 mRNA are found in association with Arf1p. Remarkably, Arf1p and Pab1p are both required to restrict ASH1 mRNA to the bud tip. Arf1p and coatomer play an unexpected role in localizing mRNA independent and downstream of the SHE machinery. Hereby acts the SHE machinery in long-range mRNA transport, whereas COPI vesicles could act as short-range and localization vehicles. The endoplasmic reticulum (ER)–Golgi shuttle might be involved in concentrating mRNA at the ER.


Sign in / Sign up

Export Citation Format

Share Document