polya tail
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Hua Li ◽  
Jun Guo ◽  
ZhongHua Zhao ◽  
Zhuangxin Ye ◽  
Jianping Chen ◽  
...  

Abstract In this work, we report the isolation of a novel positive-sense single strand RNA virus from wheat, tentatively named Triticum aestivum-associated virga-like virus 1 (TaAVLV1). Further characterization revealed that the complete genome of TaAVLV1 was divided into two segments, RNA1 and RNA2, which were 3530 and 3466 nt long, excluding the polyA tail. These segments contained two open reading frames (ORFs). The ORF in RNA1 encoded an RNA-dependent RNA polymerase (RdRp), while the ORF in RNA2 encoded a putative protein carrying MET and HEL domains. Phylogenetic analysis based on the RdRp protein of each representative genus of Virgaviridae placed TaAVLV1 in the unclassified Virgaviridae clade of the Virgaviridae family. To our knowledge, this is the first report of virga-like virus isolated from wheat. Future studies will be conducted to examine its effect on host growth and development.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shaotao Jiang ◽  
Rongdang Fu ◽  
Jiewei Shi ◽  
Huijie Wu ◽  
Jialuo Mai ◽  
...  

Angiogenesis is necessary for carcinoma progression and is regulated by a variety of pro- and anti-angiogenesis factors. CircRNAs are RNA molecules that do not have a 5’-cap or a 3’-polyA tail and are involved in a variety of biological functions. While circRNA-mediated regulation of tumor angiogenesis has received much attention, the detailed biological regulatory mechanism remains unclear. In this review, we investigated circRNAs in tumor angiogenesis from multiple perspectives, including its upstream and downstream factors. We believe that circRNAs have natural advantages and great potential for the diagnosis and treatment of tumors, which deserves further exploration.


2021 ◽  
Author(s):  
Jie Zhong ◽  
Ze Zhong Yang ◽  
Xin Yang ◽  
Zhao Jiang Guo ◽  
Wen Xie ◽  
...  

Abstract Here we reported the molecular characterization of two novel mycoviruses co-infected in a plant pathogenic fungus, Nigrospora sphaerica that were designated as Nigrospora sphaerica fusarivirus 1 (NsFV1) and Nigrospora sphaerica partitivirus 1 (NsPV1), respectively. NsFV1 has an undivided genome of 6,147 bp, excluding the polyA tail, and was predicted to contain two nonoverlapping open reading frames (ORF1 and 2). The larger ORF1 encoded a polyprotein containing a conserved RNA-dependent RNA polymerase (RdRp) and a helicase domain that have functions for RNA replication, and the smaller ORF2 encoded a putative protein with an unknown function. The NsPV1 was consists of two genome segments, which were in lengths of 1,796 bp and 1,455 bp, respectively. Each of the two dsRNAs had a single ORF and were deduced to encode proteins with homology to viral RdRp and coat protein (CP), respectively, in the family Partitiviridae. Phylogenetic analysis showed that NsFV1 was placed within the newly proposed family Fusariviridae, while NsPV1 was belonging to the genus Gammapartitivirus in the family Partitiviridae. This was the first description of mycovirses infected the fungus N. sphaerica.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chao Yan ◽  
Yupeng Wang ◽  
Tao Lyu ◽  
Zhikang Hu ◽  
Ning Ye ◽  
...  

Abstract Background Genome-wide change of polyadenylation (polyA) sites (also known as alternative polyadenylation, APA) is emerging as an important strategy of gene regulation in response to stress in plants. But little is known in woody perennials that are persistently dealing with multiple abiotic stresses. Results Here, we performed a genome-wide profiling of polyadenylation sites under heat and cold treatments in Populus trichocarpa. Through a comprehensive analysis of polyA tail sequences, we identified 25,919 polyA-site clusters (PACs), and revealed 3429 and 3139 genes shifted polyA sites under heat and cold stresses respectively. We found that a small proportion of genes possessed APA that affected the open reading frames; and some shifts were commonly identified. Functional analysis of genes displaying shifted polyA tails suggested that pathways related to RNA metabolism were linked to regulate the APA events under both heat and cold stresses. Interestingly, we found that the heat stress induced a significantly more antisense PACs comparing to cold and control conditions. Furthermore, we showed that a unique cis-element (AAAAAA) was predominately enriched downstream of PACs in P. trichocarpa genes; and this sequence signal was only absent in shifted PACs under the heat condition, indicating a distinct APA mechanism responsive to heat tolerance. Conclusions This work provides a comprehensive picture of global polyadenylation patterns in response to temperatures stresses in trees. We show that the frequent change of polyA tail is a potential mechanism of gene regulation responsive to stress, which are associated with distinctive sequence signatures.


Author(s):  
Steven L. Coon ◽  
Tianwei Li ◽  
James R. Iben ◽  
Sandy Mattijssen ◽  
Richard J. Maraia
Keyword(s):  

2020 ◽  
Author(s):  
Chao Yan ◽  
Yupeng Wang ◽  
Tao Lyu ◽  
Zhikang Hu ◽  
Ning Ye ◽  
...  

Abstract Background: Genome-wide change of polyadenylation (polyA) sites (also known as alternative polyadenylation, APA) is emerging as an important strategy of gene regulation in response to stress in plants. But little is known in woody perennials that are persistently dealing with multiple abiotic stresses. Results: Here, we performed a genome-wide profiling of polyadenylation sites under heat and cold treatments in Populus trichocarpa. Through a comprehensive analysis of polyA tail sequences, we identified 25,919 polyA-site clusters (PACs), and revealed 3429 and 3139 genes shifted polyA sites under heat and cold stresses respectively. We found that a small proportion of genes possessed APA that affected the open reading frames; and some shifts were commonly identified. Functional analysis of genes displaying shifted polyA tails suggested that pathways related to RNA metabolism were linked to regulate the APA events under both heat and cold stresses. Interestingly, we found that the heat stress induced a significantly more antisense PACs comparing to cold and control conditions. Furthermore, we showed that a unique cis-element (AAAAAA) was predominately enriched downstream of PACs in P. trichocarpa genes; and this sequence signal was only absent in shifted PACs under the heat condition, indicating a distinct APA mechanism responsive to heat tolerance. Conclusions: This work provides a comprehensive picture of global polyadenylation patterns in response to temperatures stresses in trees. We show that the frequent change of polyA tail is a potential mechanism of gene regulation responsive to stress, which are associated with distinctive sequence signatures.


2020 ◽  
Author(s):  
Chao Yan ◽  
Yupeng Wang ◽  
Tao Lyu ◽  
Zhikang Hu ◽  
Ning Ye ◽  
...  

Abstract Background Genome-wide change of polyadenylation (polyA) sites (also known as alternative polyadenylation, APA) is emerging as an important strategy of gene regulation in response to stress in plants. But little is known in woody perennials that are persistently dealing with multiple abiotic stresses.Results Here, we performed a genome-wide profiling of polyadenylation sites under heat and cold treatments in Populus trichocarpa. Through a comprehensive analysis of polyA tail sequences, we identified 25,919 polyA-site clusters (PACs), and revealed 3429 and 3139 genes shifted polyA sites under heat and cold stresses respectively. We found that a small proportion of genes possessed APA that affected the open reading frames; and some shifts were commonly identified. Functional analysis of genes displaying shifted polyA tails suggested that pathways related to RNA metabolism were linked to regulate the APA events under both heat and cold stresses. Interestingly, we found that the heat stress induced a significantly more antisense PACs comparing to cold and control conditions. Furthermore, we showed that a unique cis-element (AAAAAA) was predominately enriched downstream of PACs in P. trichocarpa genes; and this sequence signal was only absent in shifted PACs under the heat condition, indicating a distinct APA mechanism responsive to heat tolerance. Conclusions This work provides a comprehensive picture of global polyadenylation patterns in response to temperatures stresses in trees. We show that the frequent change of polyA tail is a potential mechanism of gene regulation responsive to stress, which are associated with distinctive sequence signatures.


2020 ◽  
Author(s):  
Dominika Strzelecka ◽  
Miroslaw Smietanski ◽  
Pawel J. Sikorski ◽  
Marcin Warminski ◽  
Joanna Kowalska ◽  
...  

ABSTRACTChemical modifications enable preparation of mRNAs with augmented stability and translational activity. In this study, we explored how chemical modifications of 5’,3’-phosphodiester bonds in the mRNA body and polyA tail influence the biological properties of eukaryotic mRNA. To obtain modified and unmodified in vitro transcribed mRNAs, we used ATP and ATP analogues modified at the α-phosphate (containing either O-to-S or O-to-BH3 substitutions) and three different RNA polymerases—SP6, T7 and polyA polymerase. To verify the efficiency of incorporation of ATP analogues in the presence of ATP, we developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for quantitative assessment of modification frequency based on exhaustive degradation of the transcripts to 5’-mononucleotides. The method also estimated the average polyA tail lengths, thereby providing a versatile tool for establishing a structure-biological property relationship for mRNA. We found that mRNAs containing phosphorothioate groups within the polyA tail were substantially less susceptible to degradation by 3’-deadenylase than unmodified mRNA and were efficiently expressed in cultured cells, which makes them useful research tools and potential candidates for future development of mRNA-based therapeutics.


2020 ◽  
Vol 10 (2) ◽  
pp. 247-258
Author(s):  
F. A. Isihak ◽  
M. A. Hamad ◽  
N. G. Mustafa

COVID-19 is a zoonotic disease that showed higher levels of transmissibility in humans. Coronavirus has the largest recognized genome (28–33 kb) of a positive-sense single stranded RNA. The genome composed of 5′-end, the translationable mRNA sequences for the key proteins; replicase, spike, envelop membrane, and nucleocapsid and 3′-end (polyA tail). This highly contagious virus may impair the immune system in the early phase of the disease, hence the symptoms of the disease appear very rapidly. Importantly until now, there is no efficient strategy for containing the disease. So, all the world scientists today are in a race against time to find a vaccine or treatment to COVID-19, which requires a deeper understanding.


2020 ◽  
Author(s):  
Wanxiangfu Tang ◽  
Ping Liang

AbstractMobile elements (MEs) can be divided into two major classes based on their transposition mechanisms as retrotransposons and DNA transposons. DNA transposons move in the genomes directly in the form of DNA in a cut-and-paste style, while retrotransposons utilize an RNA-intermediate to transpose in a “copy-and-paste” fashion. In addition to the target site duplications (TSDs), a hallmark of transposition shared by both classes, the DNA transposons also carry terminal inverted repeats (TIRs). DNA transposons constitute ~3% of primate genomes and they are thought to be inactive in the recent primate genomes since ~37My ago despite their success during early primate evolution. Retrotransposons can be further divided into Long Terminal Repeat retrotransposons (LTRs), which are characterized by the presence of LTRs at the two ends, and non-LTRs, which lack LTRs. In the primate genomes, LTRs constitute ~9% of genomes and have a low level of ongoing activity, while non-LTR retrotransposons represent the major types of MEs, contributing to ~37% of the genomes with some members being very young and currently active in retrotransposition. The four known types of non-LTR retrotransposons include LINEs, SINEs, SVAs, and processed pseudogenes, all characterized by the presence of a polyA tail and TSDs, which mostly range from 8 to 15 bp in length. All non-LTR retrotransposons are known to utilize the L1-based target-primed reverse transcription (TPRT) machineries for retrotransposition. In this study, we report a new type of non-LTR retrotransposon, which we named as retro-DNAs, to represent DNA transposons by sequence but non-LTR retrotransposons by the transposition mechanism in the recent primate genomes. By using a bioinformatics comparative genomics approach, we identified a total of 1,750 retro-DNAs, which represent 748 unique insertion events in the human genome and nine non-human primate genomes from the ape and monkey groups. These retro-DNAs, mostly as fragments of full-length DNA transposons, carry no TIRs but longer TSDs with ~23.5% also carrying a polyA tail and with their insertion site motifs and TSD length pattern characteristic of non-LTR retrotransposons. These features suggest that these retro-DNAs are DNA transposon sequences likely mobilized by the TPRT mechanism. Further, at least 40% of these retro-DNAs locate to genic regions, presenting significant potentials for impacting gene function. More interestingly, some retro-DNAs, as well as their parent sites, show certain levels of current transcriptional expression, suggesting that they have the potential to create more retro-DNAs in the current primate genomes. The identification of retro-DNAs, despite small in number, reveals a new mechanism in propagating the DNA transposons sequences in the primate genomes with the absence of canonical DNA transposon activity. It also suggests that the L1 TPRT machinery may have the ability to retrotranspose a wider variety of DNA sequences than what we currently know.


Sign in / Sign up

Export Citation Format

Share Document