scholarly journals Tidal volume and respiration phase modulate cortico-muscular communication

Author(s):  
Daniel S. Kluger ◽  
Joachim Gross

AbstractRecent studies in animals have convincingly demonstrated that respiration cyclically modulates oscillatory neural activity across diverse brain areas. To what extent this generalises to humans in a way that is relevant for behaviour is yet unclear. We used magnetoencephalography (MEG) to assess the potential influence of tidal volume and respiration phase on the human motor system. We obtained simultaneous recordings of brain activity, muscle activity, and respiration while participants performed an isometric contraction task. We used corticomuscular coherence as a measure of efficient long-range cortico-peripheral communication.We found coherence within the beta range over sensorimotor cortex to be reduced during voluntary deep compared to involuntary normal breathing. Moreover, beta coherence was found to be cyclically modulated by respiration phase in both conditions. Overall, these results demonstrate how respiratory rhythms actively influence brain oscillations in an effort to synchronise neural activity for the sake of computational efficiency. Intriguing questions remain with regard to the shape of these modulatory processes and how they influence perception, cognition, and behaviour.

2018 ◽  
Vol 29 (8) ◽  
pp. 3631-3641 ◽  
Author(s):  
Emiel Cracco ◽  
Christian Keysers ◽  
Amanda Clauwaert ◽  
Marcel Brass

Abstract There is now converging evidence that others’ actions are represented in the motor system. However, social cognition requires us to represent not only the actions but also the interactions of others. To do so, it is imperative that the motor system can represent multiple observed actions. The current fMRI study investigated whether this is possible by measuring brain activity from 29 participants while they observed 2 right hands performing sign language gestures. Three key results were obtained. First, brain activity in the premotor and parietal motor cortex was stronger when 2 hands performed 2 different gestures than when 1 hand performed a single gesture. Second, both individual observed gestures could be decoded from brain activity in the same 2 regions. Third, observing 2 different gestures compared with 2 identical gestures activated brain areas related to motor conflict, and this activity was correlated with parietal motor activity. Together, these results show that the motor system is able to represent multiple observed actions, and as such reveal a potential mechanism by which third-party social encounters could be processed in the brain.


2018 ◽  
Author(s):  
Emiel Cracco ◽  
Christian Keysers ◽  
Amanda Clauwaert ◽  
Marcel Brass

AbstractThere is now converging evidence that others’ actions are represented in the motor system. However, social cognition requires us to represent not only the actions but also the interactions of others. To do so, it is imperative that the motor system can represent multiple observed actions. The current fMRI study investigated whether this is possible by measuring brain activity from 29 participants while they observed two right hands performing sign language gestures. Three key results were obtained. First, brain activity in the premotor and parietal motor cortex was stronger when two hands performed two different gestures than when one hand performed a single gesture. Second, both individual observed gestures could be decoded from brain activity in the same two regions. Third, observing two different gestures compared with two identical gestures activated brain areas related to motor conflict, and this activity was correlated with parietal motor activity. Together, these results show that the motor system is able to represent multiple observed actions, and as such reveal a potential mechanism by which third-party social encounters could be processed in the brain.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
E. Salari ◽  
Z. V. Freudenburg ◽  
M. P. Branco ◽  
E. J. Aarnoutse ◽  
M. J. Vansteensel ◽  
...  

Abstract For people suffering from severe paralysis, communication can be difficult or nearly impossible. Technology systems called brain-computer interfaces (BCIs) are being developed to assist these people with communication by using their brain activity to control a computer without any muscle activity. To benefit the development of BCIs that employ neural activity related to speech, we investigated if neural activity patterns related to different articulator movements can be distinguished from each other. We recorded with electrocorticography (ECoG), the neural activity related to different articulator movements in 4 epilepsy patients and classified which articulator participants moved based on the sensorimotor cortex activity patterns. The same was done for different movement directions of a single articulator, the tongue. In both experiments highly accurate classification was obtained, on average 92% for different articulators and 85% for different tongue directions. Furthermore, the data show that only a small part of the sensorimotor cortex is needed for classification (ca. 1 cm2). We show that recordings from small parts of the sensorimotor cortex contain information about different articulator movements which might be used for BCI control. Our results are of interest for BCI systems that aim to decode neural activity related to (actual or attempted) movements from a contained cortical area.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lukasz Kwasniewicz ◽  
Grzegorz M. Wojcik ◽  
Piotr Schneider ◽  
Andrzej Kawiak ◽  
Adam Wierzbicki

Understanding how humans evaluate credibility is an important scientific question in the era of fake news. Message credibility is among crucial aspects of credibility evaluations. One of the most direct ways to understand message credibility is to use measurements of brain activity of humans performing credibility evaluations. Nevertheless, message credibility has never been investigated using such a method before. This article reports the results of an experiment during which we have measured brain activity during message credibility evaluation, using EEG. The experiment allowed for identification of brain areas that were active when participant made positive or negative message credibility evaluations. Based on experimental data, we modeled and predicted human message credibility evaluations using EEG brain activity measurements with F1 score exceeding 0.7.


2011 ◽  
Author(s):  
F. Waszak ◽  
S. Schuetz-Bosbach ◽  
C. Weiss ◽  
L. Ticini

2015 ◽  
Vol 27 (3) ◽  
pp. 791-794 ◽  
Author(s):  
Hidetaka Imagita ◽  
Akira Nishikawa ◽  
Susumu Sakata ◽  
Yasue Nishii ◽  
Akira Minematsu ◽  
...  

2004 ◽  
Vol 16 (9) ◽  
pp. 1669-1679 ◽  
Author(s):  
Emily D. Grossman ◽  
Randolph Blake ◽  
Chai-Youn Kim

Individuals improve with practice on a variety of perceptual tasks, presumably reflecting plasticity in underlying neural mechanisms. We trained observers to discriminate biological motion from scrambled (nonbiological) motion and examined whether the resulting improvement in perceptual performance was accompanied by changes in activation within the posterior superior temporal sulcus and the fusiform “face area,” brain areas involved in perception of biological events. With daily practice, initially naive observers became more proficient at discriminating biological from scrambled animations embedded in an array of dynamic “noise” dots, with the extent of improvement varying among observers. Learning generalized to animations never seen before, indicating that observers had not simply memorized specific exemplars. In the same observers, neural activity prior to and following training was measured using functional magnetic resonance imaging. Neural activity within the posterior superior temporal sulcus and the fusiform “face area” reflected the participants' learning: BOLD signals were significantly larger after training in response both to animations experienced during training and to novel animations. The degree of learning was positively correlated with the amplitude changes in BOLD signals.


2021 ◽  
Author(s):  
Aymen Sadaka ◽  
Ana Ozuna ◽  
Richard Ortiz ◽  
Praveen Kulkarni ◽  
Clare Johnson ◽  
...  

Abstract Background: The phytocannabinoid cannabidiol (CBD) is a potential treatment for post-traumatic stress disorders. How does CBD interact with the brain to alter behavior? We hypothesized that CBD would produce a dose-dependent reduction in brain activity and functional coupling in neural circuitry associated with fear and defense. Methods: During the scanning session awake mice were given vehicle or CBD (3, 10, or 30 mg/kg I.P.) and imaged for 10 min post treatment. Mice were also treated with the 10 mg/kg dose of CBD and imaged one hr later for resting state BOLD functional connectivity (rsFC). Imaging data were registered to a 3D MRI mouse atlas providing site-specific information on 138 different brain areas. Blood samples were collected for CBD measurements.Results: CBD produced a dose-dependent polarization of activation along the rostral-caudal axis of the brain. The olfactory bulb and prefrontal cortex showed an increase in positive BOLD whereas the brainstem and cerebellum showed a decrease in BOLD signal. This negative BOLD affected many areas connected to the ascending reticular activating system (ARAS). The ARAS was decoupled to much of the brain but was hyperconnected to the olfactory system and prefrontal cortex. The pattern of ARAS connectivity closely overlapped with brain areas showing high levels N-acyl-phosphatidylethanolamines-specific phospholipase D (NAPE-PLD) messenger RNA.Conclusion: The CBD-induced decrease in ARAS activity is consistent with an emerging literature suggesting that CBD reduces autonomic arousal under conditions of emotional and physical stress. The putative target and mechanism of action is NAPE-PLD the enzyme responsible for the biosynthesis of lipid signaling molecules like anandamide.


2012 ◽  
Vol 108 (4) ◽  
pp. 999-1009 ◽  
Author(s):  
Joseph Y. Nashed ◽  
Frédéric Crevecoeur ◽  
Stephen H. Scott

The motor system must consider a variety of environmental factors when executing voluntary motor actions, such as the shape of the goal or the possible presence of intervening obstacles. It remains unknown whether rapid feedback responses to mechanical perturbations also consider these factors. Our first experiment quantified how feedback corrections were altered by target shape, which was either a circular dot or a bar. Unperturbed movements to each target were qualitatively similar on average but with greater dispersion of end point positions when reaching to the bar. On random trials, multijoint torque perturbations deviated the hand left or right. When reaching to a circular target, perturbations elicited corrective movements that were directed straight to the location of the target. In contrast, corrective movements when reaching to a bar were redirected to other locations along the bar axis. Our second experiment quantified whether the presence of obstacles could interfere with feedback corrections. We found that hand trajectories after the perturbations were altered to avoid obstacles in the environment. Importantly, changes in muscle activity reflecting the different target shapes (bar vs. dot) or the presence of obstacles were observed in as little as 70 ms. Such changes in motor responses were qualitatively consistent with simulations based on optimal feedback control. Taken together, these results highlight that long-latency motor responses consider spatial properties of the goal and environment.


Sign in / Sign up

Export Citation Format

Share Document