scholarly journals Positive selection and fast turnover rate in tumor suppressor genes reveal how cetaceans resist cancer

Author(s):  
Daniela Tejada-Martinez ◽  
João Pedro de Magalhães ◽  
Juan C. Opazo

AbstractCetaceans are the longest-lived species of mammals and the largest in the history of the planet. They have developed mechanisms against diseases like cancer, however their underlying molecular and genetic basis remain unknown. The goal of this study was to investigate the role of natural selection in the evolution of tumor suppressor genes in cetaceans. We found signal of positive selection 29 tumor suppressor genes and duplications in 197 genes. The turnover rate of tumor suppressor genes was almost 6 times faster in cetaceans when compared to other mammals. Those genes with duplications and with positive selection are involved in important cancer regulation mechanisms (e.g. chromosome break, DNA repair and biosynthesis of fatty acids). They are also related with multiple ageing and neurological disorders in humans (e.g. Alzheimer, Nijmegen breakage syndrome, and schizophrenia). These results provide evolutionary evidence that natural selection in tumor suppressor genes could act on species with large body sizes and extended life span, providing insights into the genetic basis of disease resistance. We propose that the cetaceans are an important model in cancer, ageing and neuronal, motor and behavior disorders.

2021 ◽  
Vol 288 (1945) ◽  
pp. 20202592
Author(s):  
Daniela Tejada-Martinez ◽  
João Pedro de Magalhães ◽  
Juan C. Opazo

Cetaceans are the longest-living species of mammals and the largest in the history of the planet. They have developed mechanisms against diseases such cancer, although the underlying molecular bases of these remain unknown. The goal of this study was to investigate the role of natural selection in the evolution of 1077 tumour suppressor genes (TSGs) in cetaceans. We used a comparative genomic approach to analyse two sources of molecular variation in the form of d N / d S rates and gene copy number variation. We found a signal of positive selection in the ancestor of cetaceans within the CXCR2 gene, an important regulator of DNA damage, tumour dissemination and immune system. Further, in the ancestor of baleen whales, we found six genes exhibiting positive selection relating to diseases such as breast carcinoma, lung neoplasm ( ADAMTS8 ) and leukaemia ( ANXA1 ). The TSGs turnover rate (gene gain and loss) was almost 2.4-fold higher in cetaceans when compared with other mammals, and notably even faster in baleen whales. The molecular variants in TSGs found in baleen whales, combined with the faster gene turnover rate, could have favoured the evolution of their particular traits of anti-cancer resistance, gigantism and longevity. Additionally, we report 71 genes with duplications, of which 11 genes are linked to longevity (e.g. NOTCH3 and SIK1 ) and are important regulators of senescence, cell proliferation and metabolism. Overall, these results provide evolutionary evidence that natural selection in TSGs could act on species with large body sizes and extended lifespan, providing novel insights into the genetic basis of disease resistance.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 109-109 ◽  
Author(s):  
Peter Leif Bergsagel ◽  
John Carpten ◽  
Marta Chesi ◽  
Scott VanWier ◽  
Jonathan J. Keats ◽  
...  

Abstract Activation of NFkB has been noted in late B-cell malignancies, but no genetic basis for this activation has been shown except for rare mutations of the NFkB pathway in lymphoma and none have been described in MM. Bortezomib, highly tumoricidal in a subset of MM patients, inhibits NFkB suggesting it’s role as a therapeutic target. Here we show for the first time the critical importance of mutations that dysregulate this potential survival pathway in human myeloma cell lines (HMCL) and new diagnosis MM patients. We performed high-density oligonucleotide array CGH (Agilent 44k) on CD138+ selected MM cells from 68 patients and 42 unique HMCL. Initially we focused on small loci, bi-allelically deleted, as markers for inactivation of potential tumor suppressor genes. We next developed FISH probes for the identified loci to confirm the bi-allelic deletions seen by aCGH. We next sequenced all samples with monoallelic deletions, and additional unselected patients, and identified additional inactivating mutations. Multiple novel tumor suppressor genes (TSG) were identified and validated, whose loss of function (both in patients and HMCL) leads to activation of the non-canonical NFkB pathway including: TRAF2 (9q34), TRAF3 (14q32), BIRC2/BIRC3 (11q22) and CYLD (16q12). Functional studies showed that HMCL with deletion or mutations in these genes have markedly increased NFkB2 p52/p100 ratios relative to other HMCL (and for BIRC2/BIRC3 relative to an isogenic line that retains one copy of BIRC2/BIRC3), indicating genetic activation of the non-canonical NFkB pathway. Reintroduction of deleted TSG into HMCL inhibited cell growth and resulted in cell death (see data on abstract by J. Keats et al). We next focused our analysis (of combined aCGH and GEP data) on positive regulators of this pathway. Rare IgH translocations of NIK have recently been identified in MM. By aCGH we identified amplification and rearrangements of NIK. We identified dysregulated expression of TNF family receptors that activate the non-canonical pathway: CD40 (translocation), TACI (amplification) and LTBR. All of the HMCL with these mutations also showed increased NFkB2 p52/p100 ratios, consistent with activation of the non-canonical NFkB. These mutations correlate with a gene expression profile of NFkB activation that is detected in one half of patients. In summary, we have determined for the first time the genetic basis for constitutive NFkB activation - present in 19/42 HMCL, and we estimate in at least one quarter of newly diagnosed patients (approximately one half of those with evidence of NFkB activation by GEP). We propose a mechanism in which positive (TACI, CD40, LTBR) and negative regulators (TRAF2, TRAF3, BIRC2/BIRC3, CYLD) of the pathway converge on NIK to mediate the processing of NFKB2 p100 to p52. The preponderance of genetic evidence suggests that drugs that target the non-canonical NFkB pathway, will be most effective in treating the 50% of MM patients with NFkB activation.


Sign in / Sign up

Export Citation Format

Share Document