scholarly journals Degrees of compositional shift in tree communities vary along a gradient of temperature change rates over one decade: Application of an individual-based temporal beta-diversity concept

2020 ◽  
Author(s):  
Ryosuke Nakadai

AbstractTemporal patterns in communities have gained widespread attention recently, to the extent that temporal changes in community composition are now termed “temporal beta-diversity”. Previous studies of beta-diversity have made use of two classes of dissimilarity indices: incidence-based (e.g., Sørensen and Jaccard dissimilarity) and abundance-based (e.g., Bray–Curtis and Ružička dissimilarity). However, in the context of temporal beta-diversity, the persistence of identical individuals and turnover among other individuals within the same species over time have not been considered, despite the fact that both will affect compositional changes in communities. To address this issue, I propose new index concepts for beta-diversity and the relative speed of compositional shifts in relation to individual turnover based on individual identity information. Individual-based beta-diversity indices are novel dissimilarity indices that consider individual identity information to quantitatively evaluate temporal change in individual turnover and community composition. I applied these new indices to individually tracked tree monitoring data in deciduous and evergreen broad-leaved forests across the Japanese archipelago with the objective of quantifying the effect of climate change trends (i.e., rates of change of both annual mean temperature and annual precipitation) on individual turnover and compositional shifts at each site. A new index explored the relative contributions of mortality and recruitment processes to temporal changes in community composition. Clear patterns emerged showing that an increase in the temperature change rate facilitated the relative contribution of mortality components. The relative speed of compositional shift increased with increasing temperature change rates in deciduous forests but decreased with increasing warming rates in evergreen forests. These new concepts provide a way to identify novel and high-resolution temporal patterns in communities.

2021 ◽  
Author(s):  
Ryosuke Nakadai

AbstractBeta-diversity was originally defined spatially, i.e., as variation in community composition among sites in a region. However, the concept of beta-diversity has since been expanded to temporal contexts. This is referred to as “temporal beta-diversity”, and most approaches are simply an extension of spatial beta-diversity.The persistence and turnover of individuals over time is a unique feature of temporal beta-diversity. Nakadai (2020) introduced the “individual-based beta-diversity” concept, and provided novel indices to evaluate individual turnover and compositional shift by comparing individual turnover between two periods at a given site. However, the proposed individual-based indices are applicable only to pairwise dissimilarity, not to multiple-temporal (or more generally, multiple-unit) dissimilarity.Here, individual-based beta-diversity indices are extended to multiple-unit cases.To demonstrate the usage the properties of these indices compared to average pairwise measures, I applied them to a dataset for a permanent 50-ha forest dynamics plot on Barro Colorado Island in Panama.Information regarding “individuals” is generally missing from community ecology and biodiversity studies of temporal dynamics. In this context, the method proposed here is expected to be useful for addressing a wide range of research questions regarding temporal changes in biodiversity, especially studies using individual-tracked forest monitoring data.


Oecologia ◽  
2021 ◽  
Author(s):  
Ryosuke Nakadai

AbstractBeta-diversity was originally defined spatially, i.e., as variation in community composition among sites in a region. However, the concept of beta-diversity has since been expanded to temporal contexts. This is referred to as “temporal beta-diversity”, and most approaches are simply an extension of spatial beta-diversity. The persistence and turnover of individuals over time is a unique feature of temporal beta-diversity. Nakadai (2020) introduced the “individual-based beta-diversity” concept, and provided novel indices to evaluate individual turnover and compositional shift by comparing individual turnover between two periods at a given site. However, the proposed individual-based indices are applicable only to pairwise dissimilarity, not to multiple-temporal (or more generally, multiple-unit) dissimilarity. Here, individual-based beta-diversity indices are extended to multiple-unit cases. In addition, a novel type of random permutation criterion related to these multiple-unit indices for detecting patterns of individual persistence is introduced in the present study. To demonstrate the usage the properties of these indices compared to average pairwise measures, I applied them to a dataset for a permanent 50-ha forest dynamics plot on Barro Colorado Island in Panama. Information regarding “individuals” is generally missing from community ecology and biodiversity studies of temporal dynamics. In this context, the methods proposed here are expected to be useful for addressing a wide range of research questions regarding temporal changes in biodiversity, especially studies using traditional individual-tracked forest monitoring data.


2014 ◽  
Vol 281 (1778) ◽  
pp. 20132728 ◽  
Author(s):  
Pierre Legendre ◽  
Olivier Gauthier

This review focuses on the analysis of temporal beta diversity, which is the variation in community composition along time in a study area. Temporal beta diversity is measured by the variance of the multivariate community composition time series and that variance can be partitioned using appropriate statistical methods. Some of these methods are classical, such as simple or canonical ordination, whereas others are recent, including the methods of temporal eigenfunction analysis developed for multiscale exploration (i.e. addressing several scales of variation) of univariate or multivariate response data, reviewed, to our knowledge for the first time in this review. These methods are illustrated with ecological data from 13 years of benthic surveys in Chesapeake Bay, USA. The following methods are applied to the Chesapeake data: distance-based Moran's eigenvector maps, asymmetric eigenvector maps, scalogram, variation partitioning, multivariate correlogram, multivariate regression tree, and two-way MANOVA to study temporal and space–time variability. Local (temporal) contributions to beta diversity (LCBD indices) are computed and analysed graphically and by regression against environmental variables, and the role of species in determining the LCBD values is analysed by correlation analysis. A tutorial detailing the analyses in the R language is provided in an appendix.


Author(s):  
E Martins Camara ◽  
Tubino Andrade Andrade-Tub ◽  
T Pontes Franco ◽  
LN dos Santos ◽  
AFGN dos Santos ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 745
Author(s):  
Michelle Martin de Bustamante ◽  
Diego Gomez ◽  
Jennifer MacNicol ◽  
Ralph Hamor ◽  
Caryn Plummer

The objective of this study was to describe and compare the fecal bacterial microbiota of horses with equine recurrent uveitis (ERU) and healthy horses using next-generation sequencing techniques. Fecal samples were collected from 15 client-owned horses previously diagnosed with ERU on complete ophthalmic examination. For each fecal sample obtained from a horse with ERU, a sample was collected from an environmentally matched healthy control with no evidence of ocular disease. The Illumina MiSeq sequencer was used for high-throughput sequencing of the V4 region of the 16S rRNA gene. The relative abundance of predominant taxa, and alpha and beta diversity indices were calculated and compared between groups. The phyla Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria predominated in both ERU and control horses, accounting for greater than 60% of sequences. Based on linear discriminant analysis effect size (LEfSe), no taxa were found to be enriched in either group. No significant differences were observed in alpha and beta diversity indices between groups (p > 0.05 for all tests). Equine recurrent uveitis is not associated with alteration of the gastrointestinal bacterial microbiota when compared with healthy controls.


2015 ◽  
Vol 31 (5) ◽  
pp. 423-436 ◽  
Author(s):  
Cécile Richard-Hansen ◽  
Gaëlle Jaouen ◽  
Thomas Denis ◽  
Olivier Brunaux ◽  
Eric Marcon ◽  
...  

Abstract:Whereas broad-scale Amazonian forest types have been shown to influence the structure of the communities of medium- to large-bodied vertebrates, their natural heterogeneity at smaller scale or within the terra firme forests remains poorly described and understood. Diversity indices of such communities and the relative abundance of the 21 most commonly observed species were compared from standardized line-transect data across 25 study sites distributed in undisturbed forests in French Guiana. We first assessed the relevance of a forest typology based on geomorphological landscapes to explain the observed heterogeneity. As previously found for tree beta-diversity patterns, this new typology proved to be a non-negligible factor underlying the beta diversity of the communities of medium- to large bodied vertebrates in French Guianan terra firme forests. Although the species studied are almost ubiquitous across the region, they exhibited habitat preferences through significant variation in abundance and in their association index with the different landscape types. As terra firme forests represent more than 90% of the Amazon basin, characterizing their heterogeneity – including faunal communities – is a major challenge in neotropical forest ecology.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550011 ◽  
Author(s):  
Youhua Chen

A community composition island biogeography model was developed to explain and predict two community patterns (beta diversity and endemism) with the consideration of speciation, extinction and dispersal processes. Results showed that rate of speciation is positively and linearly associated with beta diversity and endemism, that is, increasing species rates typically could increase the percentage of both endemism and beta diversity. The influences of immigration and extinction rates on beta diversity and endemism are nonlinear, but with numerical simulation, I could observe that increasing extinction rates would lead to decreasing percentage of endemism and beta diversity. The role of immigration rate is very similar to that of speciation rate, having a positive relationship with beta diversity and endemism. Finally, I found that beta diversity is closely related to the percentage of endemism. The slope of this positive relationship is determined jointly by different combinations of speciation, extinction and immigration rates.


1987 ◽  
Vol 38 (5) ◽  
pp. 607
Author(s):  
AR Jones

Temporal patterns in number of species, number of individual animals and community composition of the soft-sediment zoobenthos of the Hawkesbury estuary are described and related to physicochemical factors. Replicate grabs were taken at 3-month intervals over 3 years (1977-1979) from sites located in three zones: the lower, middle and upper reaches. The number of species and number of individuals showed significant seasonal and annual differences in all zones. However, the pattern of these differences varied among sites and seasonal differences were not repeatable over years. Similarly, differences in community composition as revealed by classification were not seasonal. In the middle and lower reaches, these differences were apparently caused by the over- riding influence of non-seasonal climatic events, i.e. a major flood in 1978 and a drought throughout 1979. In the first two sampling following the flood, sample values for the numbers of both species and individuals were usually lowest and community composition was distinct from pre-flood and drought times. During the drought, the number of species was usually high and community composition relatively distinct. Whereas the number of species and community composition groupings were both significantly related to river discharge, the number of individuals was significantly correlated with temperature. All community variables were sometimes significantly related to salinity. The identity of numerically dominant species, as determined by Fager rankings, varied among times in both the lower and middle reaches. However, the polychaete Nephtys australiensis and the bivalve mollusc Notospisula trigonella were highest ranked overall in both zones. Community patterns in the low-salinity upper reaches differed from those further downstream by showing little change in numbers of species and community composition following the flood. Only the number of species was significantly correlated with any of the measured physicochemical variables, this being partly due to an influx of species during the drought. Furthermore, the upstream community was always dominated by the polychaete Ceratonereis limnetica and was thus the only community that could be characterised by a single species.


Sign in / Sign up

Export Citation Format

Share Document