scholarly journals Optoacoustic flow-cytometry with light scattering referencing

2020 ◽  
Author(s):  
Markus Seeger ◽  
Andre C. Stiel ◽  
Vasilis Ntziachristos

AbstractIn analogy to the development of fluorescent proteins, innovative tools for screening optoacoustic cell labels could lead to tailored protein labels for OA, imparting novel ways to visualize biological structure and function. Optoacoustic imaging emerges towards a highly promising modality for life sciences and medical practise with advantageous capabilities such as great accessible depth, and 3D studying of living tissue. The development of novel labels with molecular specificity could significantly enhance the optoacoustic contrast, specificity, and sensitivity and allow optoacoustic to interrogate tissues not amenable to the fluorescence method. We report on an optoacoustic flow cytometer (OAFC) prototype, developed for screening optoacoustic reporter genes. The cytometer concurrently records light scattering for referencing purposes. Since recording light scattering is completely independent from OA, we believe it to be a more reliable referencing method than e.g. fluorescence or ultrasound-backscatter. Precise characterization of our OAFC prototype showcases its ability to optoacoustically characterize objects in-flow that are in the size range of single cells. We apply the OAFC to distinguish individual E. coli cells based on optoacoustic properties of their expressed chromoproteins read in-flow using microfluidic arrangements and achieved precisions over 90%. We discuss how the light scattering referenced OAFC method offers a critical step towards routine measurement of optoacoustic properties of single-cells and could pave the way for identifying genetically encoded optoacoustic reporters, by transferring working concepts of the fluorescence field.

2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Charles T. Lauhon

ABSTRACT In bacteria, tRNAs that decode 4-fold degenerate family codons and have uridine at position 34 of the anticodon are typically modified with either 5-methoxyuridine (mo5U) or 5-methoxycarbonylmethoxyuridine (mcmo5U). These modifications are critical for extended recognition of some codons at the wobble position. Whereas the alkylation steps of these modifications have been described, genes required for the hydroxylation of U34 to give 5-hydroxyuridine (ho5U) remain unknown. Here, a number of genes in Escherichia coli and Bacillus subtilis are identified that are required for wild-type (wt) levels of ho5U. The yrrMNO operon is identified in B. subtilis as important for the biosynthesis of ho5U. Both yrrN and yrrO are homologs to peptidase U32 family genes, which includes the rlhA gene required for ho5C synthesis in E. coli. Deletion of either yrrN or yrrO, or both, gives a 50% reduction in mo5U tRNA levels. In E. coli, yegQ was found to be the only one of four peptidase U32 genes involved in ho5U synthesis. Interestingly, this mutant shows the same 50% reduction in (m)cmo5U as that observed for mo5U in the B. subtilis mutants. By analyzing the genomic context of yegQ homologs, the ferredoxin YfhL is shown to be required for ho5U synthesis in E. coli to the same extent as yegQ. Additional genes required for Fe-S biosynthesis and biosynthesis of prephenate give the same 50% reduction in modification. Together, these data suggest that ho5U biosynthesis in bacteria is similar to that of ho5C, but additional genes and substrates are required for complete modification. IMPORTANCE Modified nucleotides in tRNA serve to optimize both its structure and function for accurate translation of the genetic code. The biosynthesis of these modifications has been fertile ground for uncovering unique biochemistry and metabolism in cells. In this work, genes that are required for a novel anaerobic hydroxylation of uridine at the wobble position of some tRNAs are identified in both Bacillus subtilis and Escherichia coli. These genes code for Fe-S cluster proteins, and their deletion reduces the levels of the hydroxyuridine by 50% in both organisms. Additional genes required for Fe-S cluster and prephenate biosynthesis and a previously described ferredoxin gene all display a similar reduction in hydroxyuridine levels, suggesting that still other genes are required for the modification.


2018 ◽  
Author(s):  
Krithika Rajagopalan ◽  
Jonathan Dworkin

AbstractIn bacteria, signaling phosphorylation is thought to occur primarily on His and Asp residues. However, phosphoproteomic surveys in phylogenetically diverse bacteria over the past decade have identified numerous proteins that are phosphorylated on Ser and/or Thr residues. Consistently, genes encoding Ser/Thr kinases are present in many bacterial genomes such asE. coli,which encodes at least three Ser/Thr kinases. Since Ser/Thr phosphorylation is a stable modification, a dedicated phosphatase is necessary to allow reversible regulation. Ser/Thr phosphatases belonging to several conserved families are found in bacteria. One family of particular interest are Ser/Thr phosphatases which have extensive sequence and structural homology to eukaryotic Ser/Thr PP2C phosphatases. These proteins, called eSTPs (eukaryotic-like Ser/Thr phosphatases), have been identified in a number of bacteria, but not inE. coli.Here, we describe a previously unknown eSTP encoded by anE. coliORF,yegK,and characterize its biochemical properties including its kinetics, substrate specificity and sensitivity to known phosphatase inhibitors. We investigate differences in the activity of this protein in closely relatedE. colistrains. Finally, we demonstrate that this eSTP acts to dephosphorylate a novel Ser/Thr kinase which is encoded in the same operon.ImportanceRegulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria including the model Gram-negative bacteriumE. colidemonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thrphosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


2006 ◽  
Vol 50 (6) ◽  
pp. 1973-1981 ◽  
Author(s):  
Magdalena Stoczko ◽  
Jean-Marie Frère ◽  
Gian Maria Rossolini ◽  
Jean-Denis Docquier

ABSTRACT The diffusion of metallo-β-lactamases (MBLs) among clinically important human pathogens represents a therapeutic issue of increasing importance. However, the origin of these resistance determinants is largely unknown, although an important number of proteins belonging to the MBL superfamily have been identified in microbial genomes. In this work, we analyzed the distribution and function of genes encoding MBL-like proteins in the class Rhizobiales. Among 12 released complete genomes of members of the class Rhizobiales, a total of 57 open reading frames (ORFs) were found to have the MBL conserved motif and identity scores with MBLs ranging from 8 to 40%. On the basis of the best identity scores with known MBLs, four ORFs were cloned into Escherichia coli for heterologous expression. Among their products, one (blr6230) encoded by the Bradyrhizobium japonicum USDA110 genome, named BJP-1, hydrolyzed β-lactams when expressed in E. coli. BJP-1 enzyme is most closely related to the CAU-1 enzyme from Caulobacter vibrioides (40% amino acid sequence identity), a member of subclass B3 MBLs. A kinetic analysis revealed that BJP-1 efficiently hydrolyzed most β-lactam substrates, except aztreonam, ticarcillin, and temocillin, with the highest catalytic efficiency measured with meropenem. Compared to other MBLs, BJP-1 was less sensitive to inactivation by chelating agents.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Arivudainambi Seenichamy ◽  
Abdul Rani Bahaman ◽  
Abdul Rahim Mutalib ◽  
Siti Khairani-Bejo

Leptospirosis is one of the zoonotic diseases in animals and humans throughout the world. LipL21 is one of the important surface-exposed lipoproteins in leptospires and the most effective cross protective immunogenic antigen. It is widely considered as a diagnostic marker for leptospirosis. In this study, we evaluated the serodiagnostic potential of LipL21 protein ofLeptospira interrogansserovar Pomona. We have successfully amplified, cloned, and expressed LipL21 inE. coliand evaluated its specificity by immunoblotting. Purified recombinant LipL21 (rLipL21) was inoculated into rabbits for the production of polyclonal antibody. Characterization of the purified IgG antibody against rLipL21 was performed by cross reactivity assay. Only sera from leptospirosis patients and rabbit hyperimmune sera recognized rLipL21 while the nonleptospirosis control sera showed no reaction in immunoblotting. We confirmed that anti-rLipL21-IgG antibody cross reacted with and detected only pathogenic leptospiral species and it did not react with nonpathogenic leptospires and other bacterial species. Results observed showed that anti-rLipL21-IgG antibody has high specificity and sensitivity to leptospires. The findings indicated that the antibody could be used in a diagnostic assay for detection of leptospires or their proteins in the early phase of infection.


2012 ◽  
Vol 1 (1) ◽  
Author(s):  
Herbert Schneckenburger ◽  
Petra Weber ◽  
Michael Wagner ◽  
Thomas Bruns ◽  
Verena Richter ◽  
...  

AbstractFluorescence microscopy methods are described with high spatial, spectral, and temporal resolution. In addition to three-dimensional (3D) microscopy, based on confocal, structured, or single-plane illumination, spectral imaging and fluorescence lifetime imaging microscopy are used to probe the conformation of fluorescent molecules as well as their interaction with the microenvironment. In addition to single cells or cell monolayers, 3D cell cultures are used increasingly, as they are more representative for tissue morphology and function. All methods are discussed in the context of controlled light exposure, which is regarded as a key parameter to maintain cell viability. The applications presented in this mini review include autofluorescence measurements of glioblastoma cells as well as various fluorescent markers or fluorescent proteins.


2020 ◽  
Author(s):  
Tom Kaufman ◽  
Erez Nitzan ◽  
Nir Firestein ◽  
Miriam Ginzberg ◽  
Seshu Iyengar ◽  
...  

Abstract While multiplexing samples using DNA barcoding revolutionized the pace of biomedical discovery, multiplexing of live imaging-based applications has been limited by the number of fluorescent proteins that can be deconvoluted using common microscopy equipment. To address this limitation we developed visual barcodes that discriminate the clonal identity of single cells by targeting different fluorescent proteins to specific subcellular locations. We demonstrate that deconvolution of these barcodes is highly accurate and robust to many cellular perturbations. We then used visual barcodes to generate ‘Signalome’ cell-lines by multiplexing live reporters to monitor the simultaneous activity in 12 branches of signaling, in live cells, at single cell resolution, over time. Using the ‘Signalome’ we identified two distinct clusters of signaling pathways that balance growth and proliferation, emphasizing the importance of growth homeostasis as a central organizing principle in cancer signaling. The ability to multiplex samples in live imaging applications, both in vitro and in vivo may allow better high-content characterization of complex biological system


1999 ◽  
Vol 67 (5) ◽  
pp. 2292-2298 ◽  
Author(s):  
J. Robert Cantey ◽  
R. K. Blake ◽  
J. R. Williford ◽  
Steve L. Moseley

ABSTRACT We isolated the genetic determinant of AF/R1 pilus production in attaching/effacing Escherichia coli RDEC-1 and identified seven genes required for pilus expression and function. DNA sequence analysis of the structural subunit gene afrA corrected an error in the published sequence and extended homology with the F18 pilus subunit of pig edema E. coli strains. AfrB and AfrC, encoded downstream from AfrA, were required for pilus expression. AfrB was related to the usher protein PefC of Salmonella typhimurium plasmid-encoded fimbriae, and AfrC was related to PefD, a chaperone protein. AfrD and AfrE, encoded downstream from AfrC, were not necessary for the expression of AF/R1 pili but were required for ileal adherence as assayed by ileal brush border aggregation. Thus, the adhesive subunit of the AF/R1 pilus is distinct from the structural subunit, as is the case for Pap pili and type 1 pili. AfrD was related to FedE of the F18 fimbrial operon of the E. coli strain that causes edema disease in pigs. AfrE was a novel protein. AfrR and AfrS are encoded upstream from AfrA, in the opposite orientation. AfrR is related to the AraC family of transcriptional regulators, and AfrR and AfrS interact to function in a novel mode of transcriptional activation of afrA. AF/R1 pili mediate the adherence to Peyer’s patch M cells, ileal mucosa, and colonic mucosa in a rabbit model of diarrhea caused by enteropathogenic E. coli. Our observations will facilitate the further study of the phenomena of M-cell adherence.


2018 ◽  
Vol 90 (17) ◽  
pp. 10527-10535 ◽  
Author(s):  
Paul Vetschera ◽  
Kanuj Mishra ◽  
Juan Pablo Fuenzalida-Werner ◽  
Andriy Chmyrov ◽  
Vasilis Ntziachristos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document