scholarly journals Abstract sequential task control is facilitated by practice and embedded motor sequences

2020 ◽  
Author(s):  
Juliana E. Trach ◽  
Theresa H. McKim ◽  
Theresa M. Desrochers

AbstractEveryday task sequences, such as cooking, contain overarching goals (completing the meal), sub-goals (prepare vegetables), and motor actions (chopping). Such tasks generally are considered hierarchical because superordinate levels (e.g., goals) affect performance at subordinate levels (e.g., sub-goals and motor actions). However, there is debate as to whether this hierarchy is “strict” with unidirectional, top-down influences, and it is unknown if and how practice affects performance at the superordinate levels. To investigate these questions, we manipulated practice with sequences at the goal and motor action levels using an abstract, or non-motor, task sequence paradigm (Desrochers et al., 2015; Schneider & Logan, 2006). In three experiments, participants performed memorized abstract task sequences composed of simple tasks (e.g., color/shape judgements), where some contained embedded motor response sequences. We found that practice facilitated performance and reduced control costs for abstract task sequences and subordinate tasks. The interrelation was different between the hierarchical levels, demonstrating a strict relationship between abstract task sequence goals and sub-goals and a non-strict relationship between sub-goal and motor response levels. Under some conditions, the motor response level influenced the abstract task sequence level in a non-strict manner. Further, manipulating the presence or absence of a motor sequence after learning indicated that these effects were not the result of an integrated representation produced by practice. These experiments provide evidence for a mixed hierarchical model of task sequences and insight into the distinct roles of practice and motor processing in efficiently executing task sequences in daily life.

2019 ◽  
Vol 17 (Suppl.1) ◽  
pp. 635-637
Author(s):  
Nikolina Dimitrova

The aim of the present study is to determine the relationship between the simple motor response and the reaction that occurs when solving a complex motor task. Three groups of 20 experienced persons were studied, respectively, from the gymnastics, judo and football disciplines. The sport reaction was determined by a standard light source test. Using the video computing methodology and the dynamo platform, the time interval Δt1 for the start of the motor action and the time interval Δt2 for the overall realization were determined. A random number generator is used to vary the time interval between the light signals. Stabilization of the mean score at all surveyed individuals was observed at the latest after the seventh trial. From the results of the variation analysis of the three groups of experienced people, the group of judokas, followed by the football players and the gymnasts, stands out with the best achievements. The character of a sport discipline develops in a specific way the speed of the motor response. Standard results could be used to determine the level of some aspects of the sport-technical mastery through biomechanical criteria for realization efficiency.


2021 ◽  
Vol 11 (4) ◽  
pp. 451
Author(s):  
Miriam Gade ◽  
Kathrin Schlemmer

Cognitive flexibility enables the rapid change in goals humans want to attain in everyday life as well as in professional contexts, e.g., as musicians. In the laboratory, cognitive flexibility is usually assessed using the task-switching paradigm. In this paradigm participants are given at least two classification tasks and are asked to switch between them based on valid cues or memorized task sequences. The mechanisms enabling cognitive flexibility are investigated through two empirical markers, namely switch costs and n-2 repetition costs. In this study, we assessed both effects in a pre-instructed task-sequence paradigm. Our aim was to assess the transfer of musical training to non-musical stimuli and tasks. To this end, we collected the data of 49 participants that differed in musical training assessed using the Goldsmiths Musical Sophistication Index. We found switch costs that were not significantly influenced by the degree of musical training. N-2 repetition costs were small for all levels of musical training and not significant. Musical training did not influence performance to a remarkable degree and did not affect markers of mechanisms underlying cognitive flexibility, adding to the discrepancies of findings on the impact of musical training in non-music-specific tasks.


1970 ◽  
Vol 30 (2) ◽  
pp. 583-587 ◽  
Author(s):  
Albert V. Carron

The present report is based on reanalysis of data of Marisi (1969) in order to examine the relationship of consistency of motor response among the component responses of a single motor task. 120 high school Ss were tested on a special task, the rho. A single trial on this motor task can be logically separated into three component motor responses: reaction time, a short circular movement, and a short linear movement. The results indicated that consistency of motor response was moderately reliable within the response components but tended to be response-component specific. Further, both the reliability and specificity of motor-response consistency were independent of the size of the mean performance scores.


2018 ◽  
Vol 120 (1) ◽  
pp. 239-249 ◽  
Author(s):  
James E. Gehringer ◽  
David J. Arpin ◽  
Elizabeth Heinrichs-Graham ◽  
Tony W. Wilson ◽  
Max J. Kurz

Although it is well appreciated that practicing a motor task updates the associated internal model, it is still unknown how the cortical oscillations linked with the motor action change with practice. The present study investigates the short-term changes (e.g., fast motor learning) in the α- and β-event-related desynchronizations (ERD) associated with the production of a motor action. To this end, we used magnetoencephalography to identify changes in the α- and β-ERD in healthy adults after participants practiced a novel isometric ankle plantarflexion target-matching task. After practicing, the participants matched the targets faster and had improved accuracy, faster force production, and a reduced amount of variability in the force output when trying to match the target. Parallel with the behavioral results, the strength of the β-ERD across the motor-planning and execution stages was reduced after practice in the sensorimotor and occipital cortexes. No pre/postpractice changes were found in the α-ERD during motor planning or execution. Together, these outcomes suggest that fast motor learning is associated with a decrease in β-ERD power. The decreased strength likely reflects a more refined motor plan, a reduction in neural resources needed to perform the task, and/or an enhancement of the processes that are involved in the visuomotor transformations that occur before the onset of the motor action. These results may augment the development of neurologically based practice strategies and/or lead to new practice strategies that increase motor learning. NEW & NOTEWORTHY We aimed to determine the effects of practice on the movement-related cortical oscillatory activity. Following practice, we found that the performance of the ankle plantarflexion target-matching task improved and the power of the β-oscillations decreased in the sensorimotor and occipital cortexes. These novel findings capture the β-oscillatory activity changes in the sensorimotor and occipital cortexes that are coupled with behavioral changes to demonstrate the effects of motor learning.


2020 ◽  
pp. 136216882093754
Author(s):  
Nayoung Kim

This study investigated the optimum task sequence for second language (L2) novice learners of English. One set of task sequences was manipulated using a deductive and theoretical SSARC (simplify–stabilize–automatize–restructure–complexify) model, and two sets of task sequences were manipulated based on a teacher’s inductive classroom observations. A total of 76 undergraduates at a private university in Korea were divided into three groups for the task sequences: task complexity (TC), guided planning with vocabulary (GPV), and guided planning with content (GPC). While the four oral tasks were sequenced according to the resource-directing dimensions [± elements] and [± reasoning] in all three groups, the TC group received pretask planning, the GPV group received teacher-led guided planning with words, and the GPC group received teacher-led guided planning with content for the resource-dispersing dimensions. Pretest and posttest of syntactic complexity, accuracy, and fluency were used as the main data. The analysis showed that the TC group outperformed the GPV and GPC groups significantly in increasing overall syntactic complexity, and the GPV group outperformed the GPC group significantly in improving speed fluency. Both sequencing TC and GPV tasks significantly increased syntactic complexity and speed fluency. Sequencing TC tasks decreased accuracy and increased dysfluency, whereas sequencing GPV tasks increased accuracy and decreased dysfluency. Meanwhile, sequencing GPC tasks did not produce overall positive effects on oral performance compared with the two other groups.


2012 ◽  
Vol 70 (7) ◽  
pp. 506-513 ◽  
Author(s):  
Claudia Diniz ◽  
Bruna Velasques ◽  
Juliana Bittencourt ◽  
Caroline Peressutti ◽  
Sergio Machado ◽  
...  

The saccadic movement is an important behavioral measure used to investigate several cognitive processes, including attention and sensorimotor integration. The present study aimed at investigating changes in beta coherence over frontal, motor, occipital, and parietal cortices during the performance of two different conditions of a prosacadic paradigm. The conditions involved a different pattern of stimulus presentation: a fixed and random stimulus presentation. Twelve healthy volunteers (three male, mean age of 26.25 (SD=4.13) performed the task, while their brain activity pattern was recorded using quantitative electroencephalography. The results showed an interaction between factors condition and moment for the pair of electrode C3/C4. We observed a main effect for moment to CZ/C4, FZ/F3, and P3/PZ. We also found a main effect for condition to FZ/F4, P3/P4, and O1/O2. Our results demonstrated an important role of the inter-connection of the two hemispheres in visual search and movement preparation. The study demonstrates an automation of action and reduction of the focus of attention during the task. We also found that the inter-hemispheric beta coherence plays an important role in the differentiation of the two conditions, and that beta in the right frontal cortex is able to differentiate the conditions, demonstrating a greater involvement of procedural memory in fixed condition. Our results suggest a neuronal specialization in the execution of prosacadic paradigm involving motor task sequence.


2009 ◽  
Vol 16 (1) ◽  
pp. 26-37 ◽  
Author(s):  
YANA SUCHY ◽  
MATTHEW L. KRAYBILL ◽  
JENNIFER C. GIDLEY LARSON

AbstractDesign Fluency (DF) is typically assumed to assess planning, cognitive flexibility, and fluency in generation of visual patterns, above and beyond contributions from motor speed (Delis, Kaplan, & Kramer, 2001; Ruff, 1998). The present study examined these assumptions, as little construct validation research has been done in the past. Sixty one community-dwelling elderly participants were administered the DF, Trail Making, and Letter Fluency tests from the Delis-Kaplan Executive Function System (D-KEFS), as well as electronically administered measures of motor planning and motor sequence fluency. Hierarchical regressions were used to parse out unique variance contributions to DF performance. The results showed that generation of novel designs (i.e., the first two trials on the D-KEFS DF) relied primarily on motor planning, the ability to generate novel motor actions, and, to a lesser extent, speed of drawing with a writing implement. In contrast, generation of unique designs while switching (i.e., the third trial on the D-KEFS DF) relied primarily on visual scanning and perhaps visual-attentional resources. These findings highlight the wisdom of interpreting the switching trial of the D-KEFS DF separately. Interestingly, cognitive flexibility did not contribute to performance on any of the three D-KEFS DF trials. (JINS, 2010, 16, 26–37.)


2015 ◽  
Vol 282 (1805) ◽  
pp. 20140690 ◽  
Author(s):  
Kyoshiro Sasaki ◽  
Yuki Yamada ◽  
Kayo Miura

Upward and downward motor actions influence subsequent and ongoing emotional processing in accordance with a space–valence metaphor: positive is up/negative is down. In this study, we examined whether upward and downward motor actions could also affect previous emotional processing. Participants were shown an emotional image on a touch screen. After the image disappeared, they were required to drag a centrally located dot towards a cued area, which was either in the upper or lower portion of the screen. They were then asked to rate the emotional valence of the image using a 7-point scale. We found that the emotional valence of the image was more positive when the cued area was located in the upper portion of the screen. However, this was the case only when the dragging action was required immediately after the image had disappeared. Our findings suggest that when somatic information that is metaphorically associated with an emotion is linked temporally with a visual event, retrospective emotional integration between the visual and somatic events occurs.


2021 ◽  
Vol 7 (35) ◽  
pp. eabf9815
Author(s):  
Luis M. Franco ◽  
Michael J. Goard

During navigation, animals often use recognition of familiar environmental contexts to guide motor action selection. The retrosplenial cortex (RSC) receives inputs from both visual cortex and subcortical regions required for spatial memory and projects to motor planning regions. However, it is not known whether RSC is important for associating familiar environmental contexts with specific motor actions. We test this possibility by developing a task in which motor trajectories are chosen based on the context. We find that mice exhibit differential predecision activity in RSC and that optogenetic suppression of RSC activity impairs task performance. Individual RSC neurons encode a range of task variables, often multiplexed with distinct temporal profiles. However, the responses are spatiotemporally organized, with task variables represented along a posterior-to-anterior gradient along RSC during the behavioral performance, consistent with histological characterization. These results reveal an anatomically organized retrosplenial cortical circuit for associating environmental contexts with appropriate motor outputs.


2020 ◽  
Author(s):  
Luis M. Franco ◽  
Michael J. Goard

ABSTRACTDuring navigation, animals often use recognition of familiar environmental contexts to guide motor action selection. The retrosplenial cortex (RSC) receives inputs from both visual cortex and subcortical regions required for spatial memory, and projects to motor planning regions. However, it is not known whether RSC is important for associating familiar environmental contexts with specific motor actions. Here, we test this possibility by developing a task in which trajectories are chosen based on the context. We find that mice exhibit differential pre-decision activity in RSC, and that optogenetic suppression of RSC activity impairs task performance. Individual RSC neurons encode a range of task variables, often multiplexed with distinct temporal profiles. However, the responses are spatiotemporally organized, with task variables represented along a posterior-to-anterior gradient along RSC during the behavioral performance, consistent with histological characterization. These results reveal an anatomically-organized retrosplenial cortical circuit for associating environmental contexts to appropriate motor outputs.


Sign in / Sign up

Export Citation Format

Share Document