scholarly journals Protein-protein interactions in neurodegenerative diseases: a conspiracy theory

2020 ◽  
Author(s):  
Travis B. Thompson ◽  
Pavanjit Chaggar ◽  
Ellen Kuhl ◽  
Alain Goriely ◽  

AbstractNeurodegenerative diseases such as Alzheimer’s or Parkinson’s are associated with the prion-like propagation and aggregation of toxic proteins. A long standing hypothesis that amyloid-beta drives Alzheimer’s disease has proven the subject of contemporary controversy; leading to new research in both the role of tau protein and its interaction with amyloid-beta. Conversely, recent work in mathematical modeling has demonstrated the relevance of nonlinear reaction-diffusion type equations to capture essential features of the disease. Such approaches have been further simplified, to network-based models, and offer researchers a powerful set of computationally tractable tools with which to investigate neurodegenerative disease dynamics.Here, we propose a novel, coupled network-based model for a two-protein system that includes an enzymatic interaction term alongside a simple model of aggregate transneuronal damage. We apply this theoretical model to test the possible interactions between tau proteins and amyloid-beta and study the resulting coupled behavior between toxic protein clearance and proteopathic phenomenology. Our analysis reveals ways in which amyloid-beta and tau proteins may conspire with each other to enhance the nucleation and propagation of different diseases, thus shedding new light on the importance of protein clearance and protein interaction mechanisms in prion-like models of neurodegenerative disease.Author SummaryIn 1906 Dr. Alois Alzheimer delivered a lecture to the Society of Southwest German Psychiatrists. Dr. Alzheimer presented the case of Ms. Auguste Deter; her symptoms would help to define Alzheimer’s disease (AD). Over a century later, with an aging world population, AD is at the fore of global neurodegenerative disease research. Previously, toxic amyloid-beta protein (Aβ) was thought to be the primary driver of AD development. Recent research suggests that another protein, tau, plays a fundamental role. Toxic tau protein contributes to cognitive decline and appears to interact with toxic Aβ; research suggests that toxic Aβ may further increase the effects of toxic tau.Theoretical mathematical models are an important part of neurodegenerative disease research. Such models: enable extensible computational exploration; illuminate emergent behavior; and reduce research costs. We have developed a novel, theoretical mathematical model of two interacting species of proteins within the brain. We analyze the mathematical model and demonstrate a computational implementation in the context of Aβ-tau interaction in the brain. Our model clearly suggests that: the removal rate of toxic protein plays a critical role in AD; and the Aβ-tau ‘conspiracy theory’ is a nuanced, and exciting path forward for Alzheimer’s disease research.

Nanoscale ◽  
2017 ◽  
Vol 9 (30) ◽  
pp. 10619-10632 ◽  
Author(s):  
Faiz Ul Amin ◽  
Ali Kafash Hoshiar ◽  
Ton Duc Do ◽  
Yeongil Noh ◽  
Shahid Ali Shah ◽  
...  

Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregated amyloid beta (Aβ) in the brain.


2021 ◽  
Author(s):  
Niall Murphy

Alzheimer’s Disease is defined as progressive memory loss coincident with accumulation of aggregated amyloid beta and phosphorylated tau. Identifying the relationship between these features has guided Alzheimer’s Disease research for decades, principally with the view that aggregated proteins drive a neurodegenerative process. Here I propose that amyloid beta and phospho-tau write-protect and tag neuroplastic changes as they form, protecting and insuring established neuroplasticity from corruption. In way of illustration, binding of oligomeric amyloid beta to the prion receptor is presented as an example possible mechanism. The write-protecting process is conjected to occur at least partially under the governance of isodendritic neuromodulators such as norepinephrine and acetylcholine. Coincident with aging, animals are exposed to accumulating amounts of memorable information. Compounded with recent increases in life expectancy and exposure to information-rich environments this causes aggregating proteins to reach unforeseen toxic levels as mnemonic circuits overload. As the brain cannot purposefully delete memories nor protect against overaccumulation of aggregating proteins, the result is catastrophic breakdown on cellular and network levels causing memory loss.


2021 ◽  
Author(s):  
Prama Putra ◽  
Travis Thompson ◽  
Alain Goriely

AbstractA hallmark of Alzheimer’s disease is the aggregation of insoluble amyloid-beta plaques and tau protein neurofibrillary tangles. A key histopathological observation is that tau protein aggregates follow a clear progression pattern through the brain; characterized by six distinct stages. This so-called ‘Braak staging pattern’ has become the gold standard for Alzheimer’s disease progression. It has also been suggested, via a histopathological analysis, that soluble seed-competent tau seeding precedes tau aggregation in the same manner. Mathematical models such as prion-like propagation on networks have the ability to capture key feature of the dynamics. Here, we study the staging of tau proteins using a model of proteopathy that include both local growth due to autocatalytic effects and diffusion along axonal pathways. We develop new methods to capture the staging patterns and use these as a qualitative criterion to identify the best model for diffusion process on networks and to identify possible parameter regimes. Our analysis provides a systematic way to study Braak staging in neurodegenerative processes.


Brain ◽  
2020 ◽  
Vol 143 (8) ◽  
pp. 2576-2593 ◽  
Author(s):  
Ian F Harrison ◽  
Ozama Ismail ◽  
Asif Machhada ◽  
Niall Colgan ◽  
Yolanda Ohene ◽  
...  

Abstract The glymphatic system, that is aquaporin 4 (AQP4) facilitated exchange of CSF with interstitial fluid (ISF), may provide a clearance pathway for protein species such as amyloid-β and tau, which accumulate in the brain in Alzheimer’s disease. Further, tau protein transference via the extracellular space, the compartment that is cleared by the glymphatic pathway, allows for its neuron-to-neuron propagation, and the regional progression of tauopathy in the disorder. The glymphatic system therefore represents an exciting new target for Alzheimer’s disease. Here we aim to understand the involvement of glymphatic CSF-ISF exchange in tau pathology. First, we demonstrate impaired CSF-ISF exchange and AQP4 polarization in a mouse model of tauopathy, suggesting that this clearance pathway may have the potential to exacerbate or even induce pathogenic accumulation of tau. Subsequently, we establish the central role of AQP4 in the glymphatic clearance of tau from the brain; showing marked impaired glymphatic CSF-ISF exchange and tau protein clearance using the novel AQP4 inhibitor, TGN-020. As such, we show that this system presents as a novel druggable target for the treatment of Alzheimer’s disease, and possibly other neurodegenerative diseases alike.


2015 ◽  
Vol 6 (1) ◽  
pp. 214-226 ◽  
Author(s):  
Santosh Jadhav ◽  
Veronika Cubinkova ◽  
Ivana Zimova ◽  
Veronika Brezovakova ◽  
Aladar Madari ◽  
...  

AbstractSynapses are the principal sites for chemical communication between neurons and are essential for performing the dynamic functions of the brain. In Alzheimer’s disease and related tauopathies, synapses are exposed to disease modified protein tau, which may cause the loss of synaptic contacts that culminate in dementia. In recent decades, structural, transcriptomic and proteomic studies suggest that Alzheimer’s disease represents a synaptic disorder. Tau neurofibrillary pathology and synaptic loss correlate well with cognitive impairment in these disorders. Moreover, regional distribution and the load of neurofibrillary lesions parallel the distribution of the synaptic loss. Several transgenic models of tauopathy expressing various forms of tau protein exhibit structural synaptic deficits. The pathological tau proteins cause the dysregulation of synaptic proteome and lead to the functional abnormalities of synaptic transmission. A large body of evidence suggests that tau protein plays a key role in the synaptic impairment of human tauopathies.


2008 ◽  
Vol 29 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Li Gan ◽  
Shuhong Qiao ◽  
Xun Lan ◽  
Liying Chi ◽  
Chun Luo ◽  
...  

Author(s):  
P. Novak ◽  
N. Zilka ◽  
M. Zilkova ◽  
B. Kovacech ◽  
R. Skrabana ◽  
...  

Neurofibrillary tau protein pathology is closely associated with the progression and phenotype of cognitive decline in Alzheimer’s disease and other tauopathies, and a high-priority target for disease-modifying therapies. Herein, we provide an overview of the development of AADvac1, an active immunotherapy against tau pathology, and tau epitopes that are potential targets for immunotherapy. The vaccine leads to the production of antibodies that target conformational epitopes in the microtubule-binding region of tau, with the aim to prevent tau aggregation and spreading of pathology, and promote tau clearance. The therapeutic potential of the vaccine was evaluated in transgenic rats and mice expressing truncated, non mutant tau protein, which faithfully replicate of human tau pathology. Treatment with AADvac1 resulted in reduction of neurofibrillary pathology and insoluble tau in their brains, and amelioration of their deleterious phenotype. The vaccine was highly immunogenic in humans, inducing production of IgG antibodies against the tau peptide in 29/30 treated elderly patients with mild-to-moderate Alzheimer’s. These antibodies were able to recognise insoluble tau proteins in Alzheimer patients’ brains. Treatment with AADvac1 proved to be remarkably safe, with injection site reactions being the only adverse event tied to treatment. AADvac1 is currently being investigated in a phase 2 study in Alzheimer’s disease, and a phase 1 study in non-fluent primary progressive aphasia, a neurodegenerative disorder with a high tau pathology component.


Open Biology ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 210013
Author(s):  
Vyshnavy Balendra ◽  
Sandeep Kumar Singh

Oxidative stress, the imbalance of the antioxidant system, results in an accumulation of neurotoxic proteins in Alzheimer's disease (AD). The antioxidant system is composed of exogenous and endogenous antioxidants to maintain homeostasis. Superoxide dismutase (SOD) is an endogenous enzymatic antioxidant that converts superoxide ions to hydrogen peroxide in cells. SOD supplementation in mice prevented cognitive decline in stress-induced cells by reducing lipid peroxidation and maintaining neurogenesis in the hippocampus. Furthermore, SOD decreased expression of BACE1 while reducing plaque burden in the brain. Additionally, Astaxanthin (AST), a potent exogenous carotenoid, scavenges superoxide anion radicals. Mice treated with AST showed slower memory decline and decreased depositions of amyloid-beta (A β ) and tau protein. Currently, the neuroprotective potential of these supplements has only been examined separately in studies. However, a single antioxidant cannot sufficiently resist oxidative damage to the brain, therefore, a combinatory approach is proposed as a relevant therapy for ameliorating pathological changes in AD.


Neuroscience ◽  
2020 ◽  
Vol 424 ◽  
pp. 45-57
Author(s):  
Armin Vosoughi ◽  
Saeed Sadigh-Eteghad ◽  
Mohammad Ghorbani ◽  
Sedaghat Shahmorad ◽  
Mehdi Farhoudi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document