scholarly journals Alzheimer’s disease as a syndrome of overloaded amyloidic synaptic tagging in memory networks

2021 ◽  
Author(s):  
Niall Murphy

Alzheimer’s Disease is defined as progressive memory loss coincident with accumulation of aggregated amyloid beta and phosphorylated tau. Identifying the relationship between these features has guided Alzheimer’s Disease research for decades, principally with the view that aggregated proteins drive a neurodegenerative process. Here I propose that amyloid beta and phospho-tau write-protect and tag neuroplastic changes as they form, protecting and insuring established neuroplasticity from corruption. In way of illustration, binding of oligomeric amyloid beta to the prion receptor is presented as an example possible mechanism. The write-protecting process is conjected to occur at least partially under the governance of isodendritic neuromodulators such as norepinephrine and acetylcholine. Coincident with aging, animals are exposed to accumulating amounts of memorable information. Compounded with recent increases in life expectancy and exposure to information-rich environments this causes aggregating proteins to reach unforeseen toxic levels as mnemonic circuits overload. As the brain cannot purposefully delete memories nor protect against overaccumulation of aggregating proteins, the result is catastrophic breakdown on cellular and network levels causing memory loss.

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 524
Author(s):  
Isaac G. Onyango ◽  
Gretsen V. Jauregui ◽  
Mária Čarná ◽  
James P. Bennett ◽  
Gorazd B. Stokin

Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.


2020 ◽  
Author(s):  
Travis B. Thompson ◽  
Pavanjit Chaggar ◽  
Ellen Kuhl ◽  
Alain Goriely ◽  

AbstractNeurodegenerative diseases such as Alzheimer’s or Parkinson’s are associated with the prion-like propagation and aggregation of toxic proteins. A long standing hypothesis that amyloid-beta drives Alzheimer’s disease has proven the subject of contemporary controversy; leading to new research in both the role of tau protein and its interaction with amyloid-beta. Conversely, recent work in mathematical modeling has demonstrated the relevance of nonlinear reaction-diffusion type equations to capture essential features of the disease. Such approaches have been further simplified, to network-based models, and offer researchers a powerful set of computationally tractable tools with which to investigate neurodegenerative disease dynamics.Here, we propose a novel, coupled network-based model for a two-protein system that includes an enzymatic interaction term alongside a simple model of aggregate transneuronal damage. We apply this theoretical model to test the possible interactions between tau proteins and amyloid-beta and study the resulting coupled behavior between toxic protein clearance and proteopathic phenomenology. Our analysis reveals ways in which amyloid-beta and tau proteins may conspire with each other to enhance the nucleation and propagation of different diseases, thus shedding new light on the importance of protein clearance and protein interaction mechanisms in prion-like models of neurodegenerative disease.Author SummaryIn 1906 Dr. Alois Alzheimer delivered a lecture to the Society of Southwest German Psychiatrists. Dr. Alzheimer presented the case of Ms. Auguste Deter; her symptoms would help to define Alzheimer’s disease (AD). Over a century later, with an aging world population, AD is at the fore of global neurodegenerative disease research. Previously, toxic amyloid-beta protein (Aβ) was thought to be the primary driver of AD development. Recent research suggests that another protein, tau, plays a fundamental role. Toxic tau protein contributes to cognitive decline and appears to interact with toxic Aβ; research suggests that toxic Aβ may further increase the effects of toxic tau.Theoretical mathematical models are an important part of neurodegenerative disease research. Such models: enable extensible computational exploration; illuminate emergent behavior; and reduce research costs. We have developed a novel, theoretical mathematical model of two interacting species of proteins within the brain. We analyze the mathematical model and demonstrate a computational implementation in the context of Aβ-tau interaction in the brain. Our model clearly suggests that: the removal rate of toxic protein plays a critical role in AD; and the Aβ-tau ‘conspiracy theory’ is a nuanced, and exciting path forward for Alzheimer’s disease research.


2021 ◽  
Vol 22 (7) ◽  
pp. 3746
Author(s):  
Ilaria Zuliani ◽  
Chiara Lanzillotta ◽  
Antonella Tramutola ◽  
Eugenio Barone ◽  
Marzia Perluigi ◽  
...  

The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer’s disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Li Zuo ◽  
Benjamin T. Hemmelgarn ◽  
Chia-Chen Chuang ◽  
Thomas M. Best

An increasing number of studies have proposed a strong correlation between reactive oxygen species (ROS)-induced oxidative stress (OS) and the pathogenesis of Alzheimer’s disease (AD). With over five million people diagnosed in the United States alone, AD is the most common type of dementia worldwide. AD includes progressive neurodegeneration, followed by memory loss and reduced cognitive ability. Characterized by the formation of amyloid-beta (Aβ) plaques as a hallmark, the connection between ROS and AD is compelling. Analyzing the ROS response of essential proteins in the amyloidogenic pathway, such as amyloid-beta precursor protein (APP) and beta-secretase (BACE1), along with influential signaling programs of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK), has helped visualize the path between OS and Aβoverproduction. In this review, attention will be paid to significant advances in the area of OS, epigenetics, and their influence on Aβplaque assembly. Additionally, we aim to discuss available treatment options for AD that include antioxidant supplements, Asian traditional medicines, metal-protein-attenuating compounds, and histone modifying inhibitors.


2008 ◽  
Vol 29 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Li Gan ◽  
Shuhong Qiao ◽  
Xun Lan ◽  
Liying Chi ◽  
Chun Luo ◽  
...  

Author(s):  
Chitradevi D ◽  
Prabha S.

Background: Alzheimer’s disease (AD) is associated with Dementia, and it is also a memory syndrome in the brain. It affects the brain tissues and causes major changes in day-to-day activities. Aging is a major cause of Alzheimer's disease. AD is characterized by two pathological hallmarks as, Amyloid β protein and neurofibrillary tangles of hyperphosphorylated tau protein. The imaging hallmarks for Alzheimer’s disease are namely, swelling, shrinkage of brain tissues due to cell loss, and atrophy in the brain due to protein dissemination. Based on the survey, 60% to 80% of dementia patients belong to Alzheimer’s disease. Introduction: AD is now becoming an increasing and important brain disease. The goal of AD pathology is to cause changes/damage in brain tissues. Alzheimer's disease is thought to begin 20 years or more before symptoms appear, with tiny changes in the brain that are undetectable to the person affected. The changes in a person's brain after a few years are noticeable through symptoms such as language difficulties and memory loss. Neurons in different parts of the brain have detected symptoms such as cognitive impairments and learning disabilities. In this case, neuroimaging tools are necessary to identify the development of pathology which relates to the clinical symptoms. Methods: Several approaches have been tried during the last two decades for brain screening to analyse AD with the process of pre-processing, segmentation and classification. Different individual such as Grey Wolf optimization, Lion Optimization, Ant Lion Optimization and so on. Similarly, hybrid optimization techniques are also attempted to segment the brain sub-regions which helps in identifying the bio-markers to analyse AD. Conclusion: This study discusses a review of neuroimaging technologies for diagnosing Alzheimer's disease, as well as the discovery of hallmarks for the disease and the methodologies for finding hallmarks from brain images to evaluate AD. According to the literature review, most of the techniques predicted higher accuracy (more than 90%), which is beneficial for assessing and screening neurodegenerative illness, particularly Alzheimer's disease.


Author(s):  
Yanna Ren ◽  
Weiping Yang ◽  
Xiaoyu Tang ◽  
Fengxia Wu ◽  
Satoshi Takahashi ◽  
...  

Alzheimer's disease, a common form of dementia, is a type of neurodegenerative disease that affects more than 30% of the population older than 85. Clinically, it is characterized as memory loss and cognitive decline. Pathologically, its symptoms include cerebral atrophy, amyloid plaques and NFTs. Generally, the life expectancy is no more than nine years after the definite diagnosis, and life expectancy exceeds 14 years in only 3% of patients. Presently, there is no effective treatment to stop the process; the only measures we can take are to ease or improve symptoms temporarily. Therefore, it is necessary to diagnosis the disease in the early stage, such as through imaging detection via CT, MRI, PET and MSR, or prediction before the disease (genetic examination). However, literature data have supported the notion that Alzheimer's disease patients show cognitive reserve abilities to some degree. In the future, research perspectives may focus on the cognitive training paradigms in compensatory and restorative strategies.


2020 ◽  
Vol 21 (8) ◽  
pp. 2744 ◽  
Author(s):  
Adriana Kubis-Kubiak ◽  
Aleksandra Dyba ◽  
Agnieszka Piwowar

The brain is an organ in which energy metabolism occurs most intensively and glucose is an essential and dominant energy substrate. There have been many studies in recent years suggesting a close relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) as they have many pathophysiological features in common. The condition of hyperglycemia exposes brain cells to the detrimental effects of glucose, increasing protein glycation and is the cause of different non-psychiatric complications. Numerous observational studies show that not only hyperglycemia but also blood glucose levels near lower fasting limits (72 to 99 mg/dL) increase the incidence of AD, regardless of whether T2DM will develop in the future. As the comorbidity of these diseases and earlier development of AD in T2DM sufferers exist, new AD biomarkers are being sought for etiopathogenetic changes associated with early neurodegenerative processes as a result of carbohydrate disorders. The S100B protein seem to be interesting in this respect as it may be a potential candidate, especially important in early diagnostics of these diseases, given that it plays a role in both carbohydrate metabolism disorders and neurodegenerative processes. It is therefore necessary to clarify the relationship between the concentration of the S100B protein and glucose and insulin levels. This paper draws attention to a valuable research objective that may in the future contribute to a better diagnosis of early neurodegenerative changes, in particular in subjects with T2DM and may be a good basis for planning experiments related to this issue as well as a more detailed explanation of the relationship between the neuropathological disturbances and changes of glucose and insulin concentrations in the brain.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Lenka Hromadkova ◽  
Saak Victor Ovsepian

In Alzheimer’s disease (AD), tau pathology manifested in the accumulation of intraneuronal tangles and soluble toxic oligomers emerges as a potential therapeutic target. Multiple anti-tau antibodies inhibiting the formation and propagation of cytotoxic tau or promoting its clearance and degradation have been tested in clinical trials, albeit with the inconclusive outcome. Antibodies against tau protein have been found both in the brain circulatory system and at the periphery, but their origin and role under normal conditions and in AD remain unclear. While it is tempting to assign them a protective role in regulating tau level and removal of toxic variants, the supportive evidence remains sporadic, requiring systematic analysis and critical evaluation. Herein, we review recent data showing the occurrence of tau-reactive antibodies in the brain and peripheral circulation and discuss their origin and significance in tau clearance. Based on the emerging evidence, we cautiously propose that impairments of tau clearance at the periphery by humoral immunity might aggravate the tau pathology in the central nervous system, with implication for the neurodegenerative process of AD.


Sign in / Sign up

Export Citation Format

Share Document