scholarly journals Visualizing tumour self-homing with magnetic particle imaging

Author(s):  
Katie M Parkins ◽  
Kierstin P Melo ◽  
John A Ronald ◽  
Paula J Foster

AbstractDue to their innate tumour homing capabilities, in recent years, CTCs have been engineered to express therapeutic genes for targeted treatment of primary and metastatic lesions. Additionally, previous studies have incorporated optical or PET imaging reporter genes to enable noninvasive monitoring of therapeutic CTCs in preclinical tumour models. Here, we demonstrate for the first time, the ability of magnetic particle imaging (MPI) to sensitively detect systemically administered iron-labeled CTCs and to visualize tumour self-homing in a murine model of human breast cancer.

2021 ◽  
Author(s):  
Guorong Wang ◽  
Guangyuan Shi ◽  
Yu Tian ◽  
Lingyan Kong ◽  
Ning Ding ◽  
...  

Abstract Purpose: A sensitive and specific imaging method to detect metastatic cancer cells in lymph nodes (LNs) to detect the early-stage breast cancer is urgently needed. The purpose of this study was to investigate a novel breast cancer-targeting and tumour microenvironment ATP-responsive superparamagnetic iron oxide (SPIOs) imaging probe that was developed to detect lymph node metastasis (LNMs) through fluorescence molecular imaging (FMI) and magnetic particle imaging (MPI). The imaging nanoprobe comprised of SPIOs conjugated with breast cancer-targeting peptides (CREKA) and an ATP-responsive DNA aptamer (dsDNA-Cy5.5), abbreviated as SPIOs@A-T. Methods: SPIOs@A-T was synthesised and characterized for its imaging properties, targeting ability and toxicity in vitro. Mice with metastatic lymph node (MLN) of breast cancer were established to evaluate the FMI and MPI imaging strategy in vivo. Healthy mice with normal lymph node (NLN) were used as control group. Histological examination and biosafety evaluation were performed for further assessment. Results: After injection with SPIO@A-T, the obvious high fluorescent intensity and MPI signal were observed in MLN group than those in NLN group. MPI could also complement the limitation of imaging depth from FMI, thus could detect MLN more sensitively. The combination of the imaging strengths of FMI and MPI ensured the detection of breast cancer metastases with high sensitivity and specificity, thereby facilitating the precision differentiation of malignant from benign LNs. Besides, the biosafety evaluation results showed SPIO@A-T had good biocompatibility. Conclusion: Due to the superior properties of tumour-targeting, detection specificity, and biosafety, the SPIOs@A-T imaging probe in combination with FMI and MPI can provide a promising novel method for the early and precise detection of LNMs in clinical practice.


Author(s):  
Yanhao Zhang ◽  
Xiuxing Jiang ◽  
Qin Deng ◽  
Ziyi Gao ◽  
Xiangyu Tang ◽  
...  

Abstract Background MYO1C, an actin-based motor protein, is involved in the late stages of autophagosome maturation and fusion with the lysosome. The molecular mechanism by which MYO1C regulates autophagosome-lysosome fusion remains largely unclear. Methods Western blotting was used to determine the expression of autophagy-related proteins. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes. An immunoprecipitation assay was utilized to detect protein-protein interactions. Immunofluorescence analysis was used to detect autophagosome-lysosome fusion and colocalization of autophagy-related molecules. An overexpression plasmid or siRNA against MYO1C were sequentially introduced into human breast cancer MDA-MB-231 cells. Results We show here that cepharanthine (CEP), a novel autophagy inhibitor, inhibited autophagy/mitophagy through blockage of autophagosome-lysosome fusion in human breast cancer cells. Mechanistically, we found for the first time that MYO1C was downregulated by CEP treatment. Furthermore, the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 was inhibited by CEP treatment. Knockdown of MYO1C further decreased the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 inhibited by CEP treatment, leading to blockade of autophagosome-lysosome fusion. In contrast, overexpression of MYO1C significantly restored the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 inhibited by CEP treatment. Conclusion These findings highlight a key role of MYO1C in the regulation of autophagosome-lysosome fusion through F-actin remodeling. Our findings also suggest that CEP could potentially be further developed as a novel autophagy/mitophagy inhibitor, and a combination of CEP with classic chemotherapeutic drugs could become a promising treatment for breast cancer.


1982 ◽  
Vol 30 (2) ◽  
pp. 153-156 ◽  
Author(s):  
J A Paterson ◽  
H Salih ◽  
R P Shiu

Specific binding of human prolactin to human breast cancer cells in culture was demonstrated for the first time by immunocytochemistry ad autoradiography. Using the former technique, it was found that prolactin binding to the cell surface was heterogeneous: some cells showing intense to moderate peroxidase reaction product and some cells showing absence of reaction product. After the cells were incubated with 125I-labeled prolactin and then embedded in plastic, autoradiography of sections revealed both surface-localized and intracellular silver grains, the latter suggesting internalization of prolactin. These two cytological techniques are useful for visualizing prolactin binding to human breast cancer cells and are applicable to studies on prolactin binding in human breast cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olivia C. Sehl ◽  
Paula J. Foster

AbstractMagnetic particle imaging (MPI) and fluorine-19 (19F) MRI produce images which allow for quantification of labeled cells. MPI is an emerging instrument for cell tracking, which is expected to have superior sensitivity compared to 19F MRI. Our objective is to assess the cellular sensitivity of MPI and 19F MRI for detection of mesenchymal stem cells (MSC) and breast cancer cells. Cells were labeled with ferucarbotran or perfluoropolyether, for imaging on a preclinical MPI system or 3 Tesla clinical MRI, respectively. Using the same imaging time, as few as 4000 MSC (76 ng iron) and 8000 breast cancer cells (74 ng iron) were reliably detected with MPI, and 256,000 MSC (9.01 × 1016 19F atoms) were detected with 19F MRI, with SNR > 5. MPI has the potential to be more sensitive than 19F MRI for cell tracking. In vivo sensitivity with MPI and 19F MRI was evaluated by imaging MSC that were administered by different routes. In vivo imaging revealed reduced sensitivity compared to ex vivo cell pellets of the same cell number. We attribute reduced MPI and 19F MRI cell detection in vivo to the effect of cell dispersion among other factors, which are described.


Sign in / Sign up

Export Citation Format

Share Document