scholarly journals μ-Lat: A Mouse Model to Evaluate Human Immunodeficiency Virus Eradication Strategies

2020 ◽  
Author(s):  
Hannah S. Sperber ◽  
Padma Priya Togarrati ◽  
Kyle A. Raymond ◽  
Mohamed S. Bouzidi ◽  
Renata Gilfanova ◽  
...  

AbstractA critical barrier to the development of a human immunodeficiency virus (HIV) cure is the lack of a scalable animal model that enables robust evaluation of eradication approaches prior to testing in humans. We established a humanized mouse model of latent HIV infection by transplanting “J-Lat” cells, Jurkat cells harboring a latent HIV provirus encoding an enhanced green fluorescent protein (GFP) reporter, into irradiated adult NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. J-Lat cells exhibited successful engraftment in several tissues including spleen, bone barrow, peripheral blood, and lung, in line with the diverse natural tissue tropism of HIV. Administration of tumor necrosis factor (TNF)-α, an established HIV latency reversal agent, significantly induced GFP expression in engrafted cells across tissues, reflecting viral reactivation. These data suggest that our murine latency (“μ-Lat”) model enables efficient determination of how effectively viral eradication agents, including latency reversal agents, penetrate and function in diverse anatomical sites harboring HIV in vivo.

2018 ◽  
Vol 92 (10) ◽  
Author(s):  
Erik Abner ◽  
Mateusz Stoszko ◽  
Lei Zeng ◽  
Heng-Chang Chen ◽  
Andrea Izquierdo-Bouldstridge ◽  
...  

ABSTRACT Upon HIV-1 infection, a reservoir of latently infected resting T cells prevents the eradication of the virus from patients. To achieve complete depletion, the existing virus-suppressing antiretroviral therapy must be combined with drugs that reactivate the dormant viruses. We previously described a novel chemical scaffold compound, MMQO (8-methoxy-6-methylquinolin-4-ol), that is able to reactivate viral transcription in several models of HIV latency, including J-Lat cells, through an unknown mechanism. MMQO potentiates the activity of known latency-reversing agents (LRAs) or “shock” drugs, such as protein kinase C (PKC) agonists or histone deacetylase (HDAC) inhibitors. Here, we demonstrate that MMQO activates HIV-1 independently of the Tat transactivator. Gene expression microarrays in Jurkat cells indicated that MMQO treatment results in robust immunosuppression, diminishes expression of c-Myc, and causes the dysregulation of acetylation-sensitive genes. These hallmarks indicated that MMQO mimics acetylated lysines of core histones and might function as a bromodomain and extraterminal domain protein family inhibitor (BETi). MMQO functionally mimics the effects of JQ1, a well-known BETi. We confirmed that MMQO interacts with the BET family protein BRD4. Utilizing MMQO and JQ1, we demonstrate how the inhibition of BRD4 targets a subset of latently integrated barcoded proviruses distinct from those targeted by HDAC inhibitors or PKC pathway agonists. Thus, the quinoline-based compound MMQO represents a new class of BET bromodomain inhibitors that, due to its minimalistic structure, holds promise for further optimization for increased affinity and specificity for distinct bromodomain family members and could potentially be of use against a variety of diseases, including HIV infection. IMPORTANCE The suggested “shock and kill” therapy aims to eradicate the latent functional proportion of HIV-1 proviruses in a patient. However, to this day, clinical studies investigating the “shocking” element of this strategy have proven it to be considerably more difficult than anticipated. While the proportion of intracellular viral RNA production and general plasma viral load have been shown to increase upon a shock regimen, the global viral reservoir remains unaffected, highlighting both the inefficiency of the treatments used and the gap in our understanding of viral reactivation in vivo . Utilizing a new BRD4 inhibitor and barcoded HIV-1 minigenomes, we demonstrate that PKC pathway activators and HDAC and bromodomain inhibitors all target different subsets of proviral integration. Considering the fundamental differences of these compounds and the synergies displayed between them, we propose that the field should concentrate on investigating the development of combinatory shock cocktail therapies for improved reservoir reactivation.


2020 ◽  
Vol 34 (11) ◽  
pp. 14615-14630
Author(s):  
Hannah S. Sperber ◽  
Padma Priya Togarrati ◽  
Kyle A. Raymond ◽  
Mohamed S. Bouzidi ◽  
Renata Gilfanova ◽  
...  

2002 ◽  
Vol 76 (10) ◽  
pp. 5082-5093 ◽  
Author(s):  
Michael J. Lenardo ◽  
Sara B. Angleman ◽  
Viengngeun Bounkeua ◽  
Joseph Dimas ◽  
Melody G. Duvall ◽  
...  

ABSTRACT An important unresolved issue of AIDS pathogenesis is the mechanism of human immunodeficiency virus (HIV)-induced CD4+ T-lymphocyte destruction. We show here that HIV type 1 (HIV-1) exerts a profound cytopathic effect upon peripheral blood CD4+ T lymphocytes that resembles necrosis rather than apoptosis. Necrotic cytopathology was found with both laboratory-adapted strains and primary isolates of HIV-1. We carefully investigated the role of env, which has been previously implicated in HIV cytopathicity. HIV-1 stocks with equivalent infectivity were prepared from constructs with either an intact or mutated env coding region and pseudotyped with the glycoprotein of vesicular stomatitis virus (VSV-G) so that the HIV envelope was not rate-limiting for infection. Infected Jurkat T cells died whether or not env was intact; however, the expression of env accelerated death significantly. The accelerated death was blocked by protease inhibitors, indicating that it was due to reinfection by newly produced virus in env+ cultures. Accordingly, we found no disparity in kinetics in CD4lo Jurkat cells. In highly infected peripheral blood T cells, profound necrosis occurred equivalently with both env+ and env− stocks of HIV-1. We also found that HIV-1 cytopathicity was undiminished by the absence of nef. However, viral stocks made by complementation or packaging of HIV-1 genomes with the natural protein-coding sequences replaced by the green fluorescent protein were highly infectious but not cytopathic. Thus, env can accelerate cell death chiefly as an entry function, but one or more viral functions other than env or nef is essential for necrosis of CD4+ T cells induced by HIV-1.


2007 ◽  
Vol 51 (4) ◽  
pp. 1407-1413 ◽  
Author(s):  
Miguel Stevens ◽  
Michela Pollicita ◽  
Christophe Pannecouque ◽  
Erik Verbeken ◽  
Oriana Tabarrini ◽  
...  

ABSTRACT Two novel 6-desfluoroquinolone derivatives, HM-12 and HM-13, were evaluated for anti-human immunodeficiency virus (anti-HIV) activity in acutely, chronically, and latently HIV type 1 (HIV-1)-infected cell cultures and were found to behave as potent HIV-1 transcription inhibitors. In order to extend this result in vivo, we developed an artificial hu-SCID mouse model for HIV-1 latency based on SCID mice engrafted with latently HIV-1-infected promyelocytic OM-10.1 cells in which HIV-1 can be reactivated in vivo by the administration of human tumor necrosis factor alpha (hTNF-α). Treating these SCID mice with HM-12 or HM-13 prior to hTNF-α stimulation resulted in a pronounced suppressive effect on viral reactivation. Since both quinolone derivatives were able to inhibit the reactivation of HIV-1 from this artificial viral reservoir in vivo, we provide encouraging evidence for the use of quinolones in the control of HIV-1 infections.


2003 ◽  
Vol 77 (15) ◽  
pp. 8227-8236 ◽  
Author(s):  
Xin Lin ◽  
Dan Irwin ◽  
Satoshi Kanazawa ◽  
Laurence Huang ◽  
Joseph Romeo ◽  
...  

ABSTRACT The persistence of human immunodeficiency virus (HIV) in optimally treated infected individuals poses a major therapeutic problem. In latently infected cells, one of the observed phenotypes is absent elongation of viral transcription. Thus, the positive elongation factor b (P-TEFb), which is usually recruited by NF-κB or Tat, is not present on the HIV long terminal repeat (LTR). Although most attempts to activate these proviruses centered on NF-κB, we investigated effects of Tat. To this end, we generated transgenic mice, which secreted a chimera between Tat and the green fluorescent protein from β cells of the pancreas. This extracellular Tat distributed widely, entered nuclei of resting cells, and specifically transactivated the HIV LTR. No deleterious side effects of Tat were found. Next, we determined that Tat can activate latent proviruses in optimally treated infected individuals. In their cells, T-cell activation or exogenous Tat could induce viral replication equivalently. Thus, P-TEFb could activate the majority of the latent HIV, in this case by Tat.


2001 ◽  
Vol 45 (9) ◽  
pp. 2616-2622 ◽  
Author(s):  
Kristina Lindsten ◽  
Tat'ána Uhlı́ková ◽  
Jan Konvalinka ◽  
Maria G. Masucci ◽  
Nico P. Dantuma

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) protease is essential for production of infectious virus and is therefore a major target for the development of drugs against AIDS. Cellular proteins are also cleaved by the protease, which explains its cytotoxic activity and the consequent failure to establish convenient cell-based protease assays. We have exploited this toxicity to develop a new protease assay that relies on transient expression of an artificial protease precursor harboring the green fluorescent protein (GFP-PR). The precursor is activated in vivo by autocatalytic cleavage, resulting in rapid elimination of protease-expressing cells. Treatment with therapeutic doses of HIV-1 protease inhibitors results in a dose-dependent accumulation of the fluorescent precursor that can be easily detected and quantified by flow cytometric and fluorimetric assays. The precursor provides a convenient and noninfectious model for high-throughput screenings of substances that can interfere with the activity of the protease in living cells.


1991 ◽  
Vol 65 (8) ◽  
pp. 4502-4507 ◽  
Author(s):  
L P Martins ◽  
N Chenciner ◽  
B Asjö ◽  
A Meyerhans ◽  
S Wain-Hobson

Sign in / Sign up

Export Citation Format

Share Document