scholarly journals Cytopathic Killing of Peripheral Blood CD4+ T Lymphocytes by Human Immunodeficiency Virus Type 1 Appears Necrotic rather than Apoptotic and Does Not Require env

2002 ◽  
Vol 76 (10) ◽  
pp. 5082-5093 ◽  
Author(s):  
Michael J. Lenardo ◽  
Sara B. Angleman ◽  
Viengngeun Bounkeua ◽  
Joseph Dimas ◽  
Melody G. Duvall ◽  
...  

ABSTRACT An important unresolved issue of AIDS pathogenesis is the mechanism of human immunodeficiency virus (HIV)-induced CD4+ T-lymphocyte destruction. We show here that HIV type 1 (HIV-1) exerts a profound cytopathic effect upon peripheral blood CD4+ T lymphocytes that resembles necrosis rather than apoptosis. Necrotic cytopathology was found with both laboratory-adapted strains and primary isolates of HIV-1. We carefully investigated the role of env, which has been previously implicated in HIV cytopathicity. HIV-1 stocks with equivalent infectivity were prepared from constructs with either an intact or mutated env coding region and pseudotyped with the glycoprotein of vesicular stomatitis virus (VSV-G) so that the HIV envelope was not rate-limiting for infection. Infected Jurkat T cells died whether or not env was intact; however, the expression of env accelerated death significantly. The accelerated death was blocked by protease inhibitors, indicating that it was due to reinfection by newly produced virus in env+ cultures. Accordingly, we found no disparity in kinetics in CD4lo Jurkat cells. In highly infected peripheral blood T cells, profound necrosis occurred equivalently with both env+ and env− stocks of HIV-1. We also found that HIV-1 cytopathicity was undiminished by the absence of nef. However, viral stocks made by complementation or packaging of HIV-1 genomes with the natural protein-coding sequences replaced by the green fluorescent protein were highly infectious but not cytopathic. Thus, env can accelerate cell death chiefly as an entry function, but one or more viral functions other than env or nef is essential for necrosis of CD4+ T cells induced by HIV-1.

1998 ◽  
Vol 72 (1) ◽  
pp. 660-670 ◽  
Author(s):  
Georges Herbein ◽  
Carine Van Lint ◽  
Jennie L. Lovett ◽  
Eric Verdin

ABSTRACT Apoptosis is a main feature of AIDS pathogenesis and is thought to play a role in the progressive decrease of CD4+ T lymphocytes in infected individuals. To determine whether apoptosis occurs in infected and/or in uninfected peripheral blood T lymphocytes, we have used a recombinant human immunodeficiency virus type 1 (HIV-1) infectious clone expressing the green fluorescent protein (GFP). Using flow cytometry, we have determined the incidence of apoptosis by either terminal transferase dUTP nick end labeling or annexin-V assays in different cell subpopulations, i.e., in CD4+ or CD8+ T cells that were GFP positive or negative. After HIV-1 infection of purified peripheral blood lymphocytes, we observed that apoptosis occurred mostly in infected CD4+ peripheral blood lymphocytes. Remarkably, the presence of monocyte-derived macrophages in the culture increased dramatically the apoptosis of uninfected bystander T lymphocytes, while apoptosis in HIV-infected T lymphocytes was not changed. We therefore demonstrate that HIV-induced apoptosis results from at least two distinct mechanisms: (i) direct apoptosis in HIV-infected CD4+ T lymphocytes and (ii) indirect apoptosis in uninfected T cells mediated by antigen-presenting cells.


2003 ◽  
Vol 77 (3) ◽  
pp. 1848-1855 ◽  
Author(s):  
Sardar T. A. K. Sindhu ◽  
Rasheed Ahmad ◽  
Richard Morisset ◽  
Ali Ahmad ◽  
José Menezes

ABSTRACT Progression of human immunodeficiency virus type 1 (HIV-1) infection in humans is marked by declining CD4+-T-cell counts and increasing virus load (VL). Cytotoxic T lymphocytes (CTL) play an important role in the lysis of HIV-infected cells, especially during the early phase of asymptomatic infection. CTL responses in the later phase of disease progression may not be as effective since progressors with lower CD4+-T-cell counts have consistently higher VL despite having elevated CTL counts. We hypothesized that, apart from antiviral effects, some CTL might also contribute to AIDS pathogenesis by depleting CD4+ T cells and that this CTL activity may correlate with the VL in AIDS patients. Therefore, a cross-sectional study of 31 HIV-1-infected patients at various clinical stages was carried out. Purified CTL from these donors as well as HIV-seronegative controls were used as effectors against different human cell targets by using standard 51Cr release cytolytic assays. A direct correlation between VL and CTL-mediated, major histocompatibility complex (MHC)-unrestricted lysis of primary CD4+-T-cell, CEM.NKR, and K562 targets was observed. CD4+-T-cell counts and duration of infection also correlated with MHC-unrestricted cytolytic activity. Our data clearly show that γδ CTL are abnormally expanded in the peripheral blood of HIV-infected patients and that the Vδ1 subset of γδ T cells is the main effector population responsible for this type of cytolysis. The present data suggest that γδ CTL can contribute to the depletion of bystander CD4+ T cells in HIV-infected patients as a parallel mechanism to HIV-associated immunopathogenesis and hence expedite AIDS progression.


2000 ◽  
Vol 74 (6) ◽  
pp. 2558-2566 ◽  
Author(s):  
Waldemar Popik ◽  
Paula M. Pitha

ABSTRACT Binding of human immunodeficiency virus type 1 (HIV-1) to CD4 receptors induces multiple cellular signaling pathways, including the MEK/ERK cascade. While the interaction of X4 HIV-1 with CXCR4 does not seem to activate this pathway, viruses using CCR5 for entry efficiently activate MEK/ERK kinases (W. Popik, J. E. Hesselgesser, and P. M. Pitha, J. Virol. 72:6406–6413, 1998; W. Popik and P. M. Pitha, Virology 252:210–217, 1998). Since the importance of MEK/ERK in the initial steps of viral replication is poorly understood, we have examined the role of MEK/ERK signaling in the CD3- and CD28 (CD3/CD28)-mediated activation of HIV-1 replication in resting peripheral blood CD4+ T lymphocytes infected with X4 or R5 HIV-1. We have found that the MEK/ERK inhibitor U0126 selectively inhibited CD3/CD28-stimulated replication of X4 HIV-1, while it did not affect the replication of R5 HIV-1. Inhibition of the CD3/CD28-stimulated MEK/ERK pathway did not affect the formation of the early proviral transcripts in cells infected with either X4 or R5 HIV-1, indicating that virus reverse transcription is not affected in the absence of MEK/ERK signaling. In contrast, the levels of nuclear provirus in cells infected with X4 HIV-1, detected by the formation of circular proviral DNA, was significantly lower in cells stimulated in the presence of MEK/ERK inhibitor than in the absence of the inhibitor. However, in cells infected with R5 HIV-1, the inhibition of the MEK/ERK pathway did not affect nuclear localization of the proviral DNA. These data suggest that the nuclear import of X4, but not R5, HIV-1 is dependent on a CD3/CD28-stimulated MEK/ERK pathway.


2001 ◽  
Vol 75 (17) ◽  
pp. 7973-7986 ◽  
Author(s):  
Mario Janini ◽  
Melissa Rogers ◽  
Deborah R. Birx ◽  
Francine E. McCutchan

ABSTRACT G-to-A hypermutation has been sporadically observed in human immunodeficiency virus type 1 (HIV-1) proviral sequences from patient peripheral blood mononuclear cells (PBMC) and virus cultures but has not been systematically evaluated. PCR primers matched to normal and hypermutated sequences were used in conjunction with an agarose gel electrophoresis system incorporating an AT-binding dye to visualize, separate, clone, and sequence hypermutated and normal sequences in the 297-bp HIV-1 protease gene amplified from patient PBMC. Among 53 patients, including individuals infected with subtypes A through D and at different clinical stages, at least 43% of patients harbored abundant hypermutated, along with normal, protease genes. In 70 hypermutated sequences, saturation of G residues in the GA or GG dinucleotide context ranged from 20 to 94%. Levels of other mutants were not elevated, and G-to-A replacement was entirely restricted to GA or GG, and not GC or GT, dinucleotides. Sixty-nine of 70 hypermutated and 3 of 149 normal sequences had in-frame stop codons. To investigate the conditions under which hypermutation occurs in cell cultures, purified CD4+ T cells from normal donors were infected with cloned NL4-3 virus stocks at various times before and after phytohemagglutinin (PHA) activation. Hypermutation was pronounced when HIV-1 infection occurred simultaneously with, or a few hours after, PHA activation, but after 12 h or more after PHA activation, most HIV-1 sequences were normal. Hypermutated sequences generated in culture corresponded exactly in all parameters to those obtained from patient PBMC. Near-simultaneous activation and infection of CD4+ T cells may represent a window of susceptibility where the informational content of HIV-1 sequences is lost due to hypermutation.


1998 ◽  
Vol 72 (4) ◽  
pp. 2788-2794 ◽  
Author(s):  
Egbert Flory ◽  
Christoph K. Weber ◽  
Peifeng Chen ◽  
Angelika Hoffmeyer ◽  
Christian Jassoy ◽  
...  

ABSTRACT Increasing evidence points to a role of the mitogenic Ras/Raf/MEK/ERK signaling cascade in regulation of human immunodeficiency virus type 1 (HIV-1) gene expression. Stimulation of elements of this pathway leads to transactivation of the HIV-1 promoter. In particular, the NF-κB motif in the HIV long terminal repeat (LTR) represents a Raf-responsive element in fibroblasts. Regulation of the Raf kinase in T cells differs from findings with a variety of cell lines that the catalytic domain of Raf (RafΔ26–303) shows no activity. In this study, we restored the activity of the kinase in T cells by fusing its catalytic domain to the CAAX motif (-Cx) of Ras, thus targeting the enzyme to the plasma membrane. Constitutive activity of Raf was demonstrated by phosphorylation of mitogen-activated protein kinase kinase (MEK) and endogenous mitogen-activated protein kinase 1/2 (ERK1/2) in A3.01 T cells transfected with RafΔ26–303-Cx. Membrane-targeted Raf also stimulates NF-κB, as judged by κB-dependent reporter assays and enhanced NF-κB p65 binding on band shift analysis. Moreover, we found that active Raf transactivates the HIVNL4-3 LTR in A3.01 T lymphocytes and that dominant negative Raf (C4) blocked 12-O-tetradecanoylphorbol-13-acetate induced transactivation. When cotransfected with infectious HIVNL4-3 DNA, membrane-targeted Raf induces viral replication up to 10-fold over basal levels, as determined by the release of newly synthesized p24 gag protein. Our study clearly demonstrates that the activity of the catalytic domain of Raf in A3.01 T cells is dependent on its cellular localization. The functional consequences of active Raf in T lymphocytes include not only NF-κB activation and transactivation of the HIVNL4-3 LTR but also synthesis and release of HIV particles.


2004 ◽  
Vol 78 (19) ◽  
pp. 10536-10542 ◽  
Author(s):  
Jean-Michel Fondere ◽  
Gael Petitjean ◽  
Marie-France Huguet ◽  
Sharon Lynn Salhi ◽  
Vincent Baillat ◽  
...  

ABSTRACT In resting CD4+ T lymphocytes harboring human immunodeficiency virus type 1 (HIV-1), replication-competent virus persists in patients responding to highly active antiretroviral therapy (HAART). This small latent reservoir represents between 103 and 107 cells per patient. However, the efficiency of HIV-1 DNA-positive resting CD4+ T cells in converting to HIV-1-antigen-secreting cells (HIV-1-Ag-SCs) after in vitro CD4+-T-cell polyclonal stimulation has not been satisfactorily evaluated. By using an HIV-1-antigen enzyme-linked immunospot assay, 8 HIV-1-Ag-SCs per 106 CD4+ resting T cells were quantified in 25 patients with a plasma viral load of <20 copies/ml, whereas 379 were enumerated in 10 viremic patients. In parallel, 369 and 1,238 copies of HIV-1 DNA per 106 CD4+ T cells were enumerated in the two groups of patients, respectively. Only a minority of latently HIV-1 DNA-infected CD4+ T cells could be stimulated in vitro to become HIV-1-Ag-SCs, particularly in aviremic patients. The difference between the number of HIV-1 immunospots in viremic versus aviremic patients could be explained by HIV-1 unintegrated viral DNA that gave additional HIV-1-Ag-SCs after in vitro CD4+-T-cell polyclonal stimulation. The ELISPOT approach to targeting the HIV-1-Ag-SCs could be a useful method for identifying latently HIV-1-infected CD4+ T cells carrying replication-competent HIV-1 in patients responding to HAART.


2003 ◽  
Vol 77 (13) ◽  
pp. 7383-7392 ◽  
Author(s):  
Monika Hermankova ◽  
Janet D. Siliciano ◽  
Yan Zhou ◽  
Daphne Monie ◽  
Karen Chadwick ◽  
...  

ABSTRACT In individuals with human immunodeficiency virus type 1 (HIV-1) infection, a small reservoir of resting memory CD4+ T lymphocytes carrying latent, integrated provirus persists even in patients treated for prolonged periods with highly active antiretroviral therapy (HAART). This reservoir greatly complicates the prospects for eradicating HIV-1 infection with antiretroviral drugs. Therefore, it is critical to understand how HIV-1 latency is established and maintained. In particular, it is important to determine whether transcriptional or posttranscriptional mechanisms are involved. Therefore, HIV-1 DNA and mRNAs were measured in highly purified populations of resting CD4+ T lymphocytes from the peripheral blood of patients on long-term HAART. In such patients, the predominant form of persistent HIV-1 is latent integrated provirus. Typically, 100 HIV-1 DNA molecules were detected per 106 resting CD4+ T cells. Only very low levels of unspliced HIV-1 RNA (∼50 copies/106 resting CD4+ T cells) were detected using a reverse transcriptase PCR assay capable of detecting a single molecule of RNA standard. Levels of multiply spliced HIV-1 RNA were below the limit of detection (<50 copies/106 cells). Only 1% of the HIV-1 DNA-positive lymphocytes in this compartment could be induced to up-regulate HIV-1 mRNAs after cellular activation, indicating that most of the proviral DNA in resting CD4+ T cells either carries intrinsic defects precluding transcription or is subjected to transcriptional control mechanisms that preclude high-level production of multiply spliced mRNAs. Nevertheless, by inducing T-cell activation, it is possible to isolate replication-competent virus from resting CD4+ T lymphocytes of all infected individuals, including those on prolonged HAART. Thus, a subset of integrated proviruses (1%) remains competent for high-level mRNA production after cellular activation, and a subset of these can produce infectious virus. Measurements of steady-state levels of multiply spliced and unspliced HIV-1 RNA prior to cellular activation suggest that infected resting CD4+ T lymphocytes in blood synthesize very little viral RNA and are unlikely to be capable of producing virus. In these cells, latency appears to reflect regulation at the level of mRNA production rather than at the level of splicing or nuclear export of viral mRNAs.


2008 ◽  
Vol 82 (17) ◽  
pp. 8307-8315 ◽  
Author(s):  
Amanda J. Chase ◽  
Hung-Chih Yang ◽  
Hao Zhang ◽  
Joel N. Blankson ◽  
Robert F. Siliciano

ABSTRACT Elite suppressors (ES) are untreated human immunodeficiency virus type 1 (HIV-1)-infected individuals who maintain normal CD4+ T-cell counts and control viremia to levels that are below the limit of detection of current assays. The mechanisms involved in long-term control of viremia have not been fully elucidated. CD4+ CD25+ regulatory T cells (Tregs) downmodulate chronic inflammation by suppressing the activation and proliferation of effector lymphocytes. We found that while Tregs were functional in ES and patients on highly active antiretroviral therapy (HAART), ES maintained high levels of Tregs in peripheral blood mononuclear cells whereas patients on HAART had evidence of Treg depletion. We also demonstrated that Tregs can serve as reservoirs for HIV-1 in vivo. These data suggest that both direct infection by HIV-1 and tissue redistribution are possible explanations for declining FoxP3+ Tregs in progressive HIV-1 infection. Furthermore, the maintenance of Tregs may be one mechanism associated with the nonprogressive nature of HIV-1 infection in ES.


1998 ◽  
Vol 72 (8) ◽  
pp. 6430-6436 ◽  
Author(s):  
Lei Yin ◽  
Douglas Braaten ◽  
Jeremy Luban

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Gag and the cellular protein cyclophilin A form an essential complex in the virion core: virions produced by proviruses encoding Gag mutants with decreased cyclophilin A affinity exhibit attenuated infectivity, as do virions produced in the presence of the competitive inhibitor cyclosporine. The A224E Gag mutant has no effect on cyclophilin A affinity but renders HIV-1 replication cyclosporine resistant in Jurkat T cells. In contrast, A224E mutant virus is dead in H9 T cells, although replication is rescued by cyclosporine or by expression in cis of a Gag mutant that decreases cyclophilin A-affinity. The observation that disruption of the Gag-cyclophilin A interaction rescues A224E mutant replication in H9 cells prompted experiments which revealed that, relative to Jurkat cells, H9 cells express greater quantities of cyclophilin A. The resulting larger quantity of cyclophilin A shown to be packaged into virions produced by H9 cells is presumably disruptive to the A224E mutant virion core. Further evidence that increased cyclophilin A expression in H9 cells is of functional relevance was provided by the finding that Gag mutants with decreased cyclophilin A affinity are dead in Jurkat cells but capable of replication in H9 cells. Similarly, cyclosporine concentrations which inhibit wild-type HIV-1 replication in Jurkat cells stimulate HIV-1 replication in H9 cells. These results suggest that HIV-1 virion infectivity imposes narrow constraints upon cyclophilin A stoichiometry in virions and that infectivity is finely tuned by host cyclophilin A expression levels.


2003 ◽  
Vol 77 (19) ◽  
pp. 10456-10467 ◽  
Author(s):  
Michael A. Poles ◽  
Shady Barsoum ◽  
Wenjie Yu ◽  
Jian Yu ◽  
Patricia Sun ◽  
...  

ABSTRACT γδ T cells are primarily found in the gastrointestinal mucosa and play an important role in the first line of defense against viral, bacterial, and fungal pathogens. We sought to examine the impact of human immunodeficiency virus type 1 (HIV-1) infection on mucosal as well as peripheral blood γδ T-cell populations. Our results demonstrate that HIV-1 infection is associated with significant expansion of Vδ1 and contraction of Vδ2 cell populations in both the mucosa and peripheral blood. Such changes were observed during acute HIV-1 infection and persisted throughout the chronic phase, without apparent reversion after treatment with highly active antiretroviral therapy (HAART). Despite an increase in the expression of CCR9 and CD103 mucosal homing receptors on peripheral blood γδ T cells in infected individuals, mucosal and peripheral blood γδ T cells appeared to be distinct populations, as reflected by distinct CDR3 length polymorphisms and sequences in the two compartments. Although the underlying mechanism responsible for triggering the expansion of Vδ1 γδ T cells remains unknown, HIV-1 infection appears to have a dramatic impact on γδ T cells, which could have important implications for HIV-1 pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document