scholarly journals Transcriptome profiling of the branchial arches reveals cell type composition and a conserved signature of neural crest cell invasion

Author(s):  
Jason A Morrison ◽  
Rebecca McLennan ◽  
Jessica M Teddy ◽  
Allison R Scott ◽  
Jennifer C Kasemeier-Kulesa ◽  
...  

ABSTRACTThe vertebrate branchial arches that give rise to structures of the head, neck, and heart form with very dynamic tissue growth and well-choreographed neural crest, ectoderm, and mesoderm cell dynamics. Although this morphogenesis has been studied by marker expression and fate-mapping, the mechanisms that control the collective migration and diversity of the neural crest and surrounding tissues remain unclear, in part due to the effects of averaging and need for cell isolation in conventional transcriptome analysis experiments of multiple cell populations. We used label free single cell RNA sequencing on 95,000 individual cells at 2 developmental stages encompassing formation of the first four chick branchial arches to measure the transcriptional states that define the cellular hierarchy and invasion signature of the migrating neural crest. The results confirmed basic features of cell type diversity and led to the discovery of many novel markers that discriminate between axial level and distal-to-proximal cell populations within the branchial arches and neural crest streams. We identified the transcriptional signature of the most invasive neural crest that is conserved within each branchial arch stream and elucidated a set of genes common to other cell invasion signatures in types in cancer, wound healing and development. These data robustly delineate molecularly distinct cell types within the branchial arches and identify important molecular transitions within the migrating neural crest during development.

1981 ◽  
Vol 82 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Jeanne Loring ◽  
Bengt Glimelius ◽  
Carol Erickson ◽  
James A. Weston

Development ◽  
1996 ◽  
Vol 123 (1) ◽  
pp. 329-344 ◽  
Author(s):  
T.F. Schilling ◽  
T. Piotrowski ◽  
H. Grandel ◽  
M. Brand ◽  
C.P. Heisenberg ◽  
...  

Jaws and branchial arches together are a basic, segmented feature of the vertebrate head. Seven arches develop in the zebrafish embryo (Danio rerio), derived largely from neural crest cells that form the cartilaginous skeleton. In this and the following paper we describe the phenotypes of 109 arch mutants, focusing here on three classes that affect the posterior pharyngeal arches, including the hyoid and five gill-bearing arches. In lockjaw, the hyoid arch is strongly reduced and subsets of branchial arches do not develop. Mutants of a large second class, designated the flathead group, lack several adjacent branchial arches and their associated cartilages. Five alleles at the flathead locus all lead to larvae that lack arches 4–6. Among 34 other flathead group members complementation tests are incomplete, but at least six unique phenotypes can be distinguished. These all delete continuous stretches of adjacent branchial arches and unpaired cartilages in the ventral midline. Many show cell death in the midbrain, from which some neural crest precursors of the arches originate. lockjaw and a few mutants in the flathead group, including pistachio, affect both jaw cartilage and pigmentation, reflecting essential functions of these genes in at least two neural crest lineages. Mutants of a third class, including boxer, dackel and pincher, affect pectoral fins and axonal trajectories in the brain, as well as the arches. Their skeletal phenotypes suggest that they disrupt cartilage morphogenesis in all arches. Our results suggest that there are sets of genes that: (1) specify neural crest cells in groups of adjacent head segments, and (2) function in common genetic pathways in a variety of tissues including the brain, pectoral fins and pigment cells as well as pharyngeal arches.


2007 ◽  
Vol 302 (2) ◽  
pp. 553-568 ◽  
Author(s):  
Matthew J. Simpson ◽  
Dong C. Zhang ◽  
Michael Mariani ◽  
Kerry A. Landman ◽  
Donald F. Newgreen

Development ◽  
2000 ◽  
Vol 127 (8) ◽  
pp. 1671-1679 ◽  
Author(s):  
Y. Chai ◽  
X. Jiang ◽  
Y. Ito ◽  
P. Bringas ◽  
J. Han ◽  
...  

Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.


Development ◽  
2000 ◽  
Vol 127 (6) ◽  
pp. 1161-1172 ◽  
Author(s):  
P.M. Kulesa ◽  
S.E. Fraser

Hindbrain neural crest cells were labeled with DiI and followed in ovo using a new approach for long-term time-lapse confocal microscopy. In ovo imaging allowed us to visualize neural crest cell migration 2–3 times longer than in whole embryo explant cultures, providing a more complete picture of the dynamics of cell migration from emergence at the dorsal midline to entry into the branchial arches. There were aspects of the in ovo neural crest cell migration patterning which were new and different. Surprisingly, there was contact between neural crest cell migration streams bound for different branchial arches. This cell-cell contact occurred in the region lateral to the otic vesicle, where neural crest cells within the distinct streams diverted from their migration pathways into the branchial arches and instead migrated around the otic vesicle to establish a contact between streams. Some individual neural crest cells did appear to cross between the streams, but there was no widespread mixing. Analysis of individual cell trajectories showed that neural crest cells emerge from all rhombomeres (r) and sort into distinct exiting streams adjacent to the even-numbered rhombomeres. Neural crest cell migration behaviors resembled the wide diversity seen in whole embryo chick explants, including chain-like cell arrangements; however, average in ovo cell speeds are as much as 70% faster. To test to what extent neural crest cells from adjoining rhombomeres mix along migration routes and within the branchial arches, separate groups of premigratory neural crest cells were labeled with DiI or DiD. Results showed that r6 and r7 neural crest cells migrated to the same spatial location within the fourth branchial arch. The diversity of migration behaviors suggests that no single mechanism guides in ovo hindbrain neural crest cell migration into the branchial arches. The cell-cell contact between migration streams and the co-localization of neural crest cells from adjoining rhombomeres within a single branchial arch support the notion that the pattern of hindbrain neural crest cell migration emerges dynamically with cell-cell communication playing an important guidance role.


Development ◽  
1995 ◽  
Vol 121 (4) ◽  
pp. 935-945 ◽  
Author(s):  
E. Birgbauer ◽  
J. Sechrist ◽  
M. Bronner-Fraser ◽  
S. Fraser

Neural crest cell migration in the hindbrain is segmental, with prominent streams of migrating cells adjacent to rhombomeres (r) r2, r4 and r6, but not r3 or r5. This migratory pattern cannot be explained by the failure of r3 and r5 to produce neural crest, since focal injections of the lipophilic dye, DiI, into the neural folds clearly demonstrate that all rhombomeres produce neural crest cells. Here, we examine the dynamics of hindbrain neural crest cell emigration and movement by iontophoretically injecting DiI into small numbers of cells. The intensely labeled cells and their progeny were repeatedly imaged using low-light-level epifluorescence microscopy, permitting their movement to be followed in living embryos over time. These intravital images definitively show that neural crest cells move both rostrally and caudally from r3 and r5 to emerge as a part of the streams adjacent to r2, r4, and/or r6. Within the first few hours, cells labeled in r3 move within and/or along the dorsal neural tube surface, either rostrally toward the r2/3 border or caudally toward the r3/4 border. The labeled cells exit the surface of the neural tube near these borders and migrate toward the first or second branchial arches several hours after initial labeling. Focal DiI injections into r5 resulted in neural crest cell contributions to both the second and third branchial arches, again via rostrocaudal movements of the cells before migration into the periphery. These results demonstrate conclusively that all rhombomeres give rise to neural crest cells, and that rostrocaudal rearrangement of the cells contributes to the segmental migration of neural crest cells adjacent to r2, r4, and r6. Furthermore, it appears that there are consistent exit points of neural crest cell emigration; for example, cells arising from r3 emigrate almost exclusively from the rostral or caudal borders of that rhombomere.


Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 433-442 ◽  
Author(s):  
Paul A. Trainor ◽  
Dorothy Sobieszczuk ◽  
David Wilkinson ◽  
Robb Krumlauf

Cranial neural crest cells are a pluripotent population of cells derived from the neural tube that migrate into the branchial arches to generate the distinctive bone, connective tissue and peripheral nervous system components characteristic of the vertebrate head. The highly conserved segmental organisation of the vertebrate hindbrain plays an important role in pattering the pathways of neural crest cell migration and in generating the distinct or separate streams of crest cells that form unique structures in each arch. We have used focal injections of DiI into the developing mouse hindbrain in combination with in vitro whole embryo culture to map the patterns of cranial neural crest cell migration into the developing branchial arches. Our results show that mouse hindbrain-derived neural crest cells migrate in three segregated streams adjacent to the even-numbered rhombomeres into the branchial arches, and each stream contains contributions of cells from three rhombomeres in a pattern very similar to that observed in the chick embryo. There are clear neural crest-free zones adjacent to r3 and r5. Furthermore, using grafting and lineage-tracing techniques in cultured mouse embryos to investigate the differential ability of odd and even-numbered segments to generate neural crest cells, we find that odd and even segments have an intrinsic ability to produce equivalent numbers of neural crest cells. This implies that inter-rhombomeric signalling is less important than combinatorial interactions between the hindbrain and the adjacent arch environment in specific regions, in the process of restricting the generation and migration of neural crest cells. This creates crest-free territories and suggests that tissue interactions established during development and patterning of the branchial arches may set up signals that the neural plate is primed to interpret during the progressive events leading to the delamination and migration of neural crest cells. Using interspecies grafting experiments between mouse and chick embryos, we have shown that this process forms part of a conserved mechanism for generating neural crest-free zones and contributing to the separation of migrating crest populations with distinct Hox expression during vertebrate head development.


Development ◽  
2021 ◽  
Vol 148 (22) ◽  
Author(s):  
Jason A. Morrison ◽  
Rebecca McLennan ◽  
Jessica M. Teddy ◽  
Allison R. Scott ◽  
Jennifer C. Kasemeier-Kulesa ◽  
...  

ABSTRACT The dynamics of multipotent neural crest cell differentiation and invasion as cells travel throughout the vertebrate embryo remain unclear. Here, we preserve spatial information to derive the transcriptional states of migrating neural crest cells and the cellular landscape of the first four chick cranial to cardiac branchial arches (BA1-4) using label-free, unsorted single-cell RNA sequencing. The faithful capture of branchial arch-specific genes led to identification of novel markers of migrating neural crest cells and 266 invasion genes common to all BA1-4 streams. Perturbation analysis of a small subset of invasion genes and time-lapse imaging identified their functional role to regulate neural crest cell behaviors. Comparison of the neural crest invasion signature to other cell invasion phenomena revealed a shared set of 45 genes, a subset of which showed direct relevance to human neuroblastoma cell lines analyzed after exposure to the in vivo chick embryonic neural crest microenvironment. Our data define an important spatio-temporal reference resource to address patterning of the vertebrate head and neck, and previously unidentified cell invasion genes with the potential for broad impact.


Sign in / Sign up

Export Citation Format

Share Document