scholarly journals Plastidic Δ6 fatty-acid desaturases with distinctive substrate specificity regulate the pool of c18-pufas in the ancestral picoalga ostreococcus tauri

2020 ◽  
Author(s):  
Charlotte Degraeve-Guilbault C. ◽  
Rodrigo E. Gomez ◽  
Cécile. Lemoigne ◽  
Nattiwong Pankansem ◽  
Soizic Morin ◽  
...  

ABSTRACTEukaryotic Δ6-desaturases are microsomal enzymes which balance the synthesis of ω-3 and ω-6 C18-polyunsaturated-fatty-acids (PUFA) accordingly to their specificity. In several microalgae, including O. tauri, plastidic C18-PUFA are specifically regulated by environmental cues suggesting an autonomous control of Δ6-desaturation of plastidic PUFA. Sequence retrieval from O. tauri desaturases, highlighted two putative Δ6/Δ8-desaturases sequences clustering, with other microalgal homologs, apart from other characterized Δ-6 desaturases. Their overexpression in heterologous hosts, including N. benthamiana and Synechocystis, unveiled their Δ6-desaturation activity and plastid localization. O. tauri lines overexpressing these Δ6-desaturases no longer adjusted their plastidic C18-PUFA amount under phosphate starvation but didn’t show any obvious physiological alterations. Detailed lipid analyses from the various overexpressing hosts, unravelled that the substrate features involved in the Δ6-desaturase specificity importantly involved the lipid head-group and likely the non-substrate acyl-chain, in addition to the overall preference for the ω-class of the substrate acyl-chain. The most active desaturase displayed a broad range substrate specificity for plastidic lipids and a preference for ω-3 substrates, while the other was selective for ω-6 substrates, phosphatidylglycerol and 16:4-galactolipid species specific to the native host. The distribution of plastidial Δ6-desaturase products in eukaryotic hosts suggested the occurrence of C18-PUFA export from the plastid.One sentence summaryOsteococcus tauri plastidic lipid C18-PUFA remodelling involves two plastid-located cytochrome-b5 fused Δ6-desaturases with distinct preferences for both head-group and acyl-chain.

2019 ◽  
Author(s):  
Athina Konstantinidi ◽  
Maria Chountoulesi ◽  
Nikolaos Naziris ◽  
Barbara Sartori ◽  
Heinz Amenitsch ◽  
...  

The investigation and observations made for the M2TM, excess aminoadamantane ligands in DMPC were made using the simpler version of biophysical methods including SDC, SAXS and WAXS, MD simulations and ssNMR. 1H, 31P ssNMR and MD simulations, showed that M2TM in apo form or drug-bound form span the membrane interacting strongly with lipid acyl chain tails and the phosphate groups of the polar head surface. The MD simulations showed that the drugs anchor through their ammonium group with the lipid phosphate and occasionally with M2TM asparagine-44 carboxylate groups. The 13C ssNMR experiments allow the inspection of excess drug molecules and the assessment of its impact on the lipid head-group region. At low peptide concentrations of influenza A M2TM tetramer in DPMC bilayer, two lipid domains were observed that likely correspond to the M2TM boundary lipids and the bulk-like lipids. At high peptide concentrations, one domain was identified which constitute essentially all of the lipids which behave as boundary. This effect is likely due, according to the MD simulations, to the preference of AK13 to locate in closer vicinity to M2TM compared to Amt as well as the stronger ionic interactions of Amt primary ammonium group with phosphate groups, compared with the secondary buried ammonium group in AK13.<br>


2019 ◽  
Author(s):  
Athina Konstantinidi ◽  
Maria Chountoulesi ◽  
Nikolaos Naziris ◽  
Barbara Sartori ◽  
Heinz Amenitsch ◽  
...  

The investigation and observations made for the M2TM, excess aminoadamantane ligands in DMPC were made using the simpler version of biophysical methods including SDC, SAXS and WAXS, MD simulations and ssNMR. 1H, 31P ssNMR and MD simulations, showed that M2TM in apo form or drug-bound form span the membrane interacting strongly with lipid acyl chain tails and the phosphate groups of the polar head surface. The MD simulations showed that the drugs anchor through their ammonium group with the lipid phosphate and occasionally with M2TM asparagine-44 carboxylate groups. The 13C ssNMR experiments allow the inspection of excess drug molecules and the assessment of its impact on the lipid head-group region. At low peptide concentrations of influenza A M2TM tetramer in DPMC bilayer, two lipid domains were observed that likely correspond to the M2TM boundary lipids and the bulk-like lipids. At high peptide concentrations, one domain was identified which constitute essentially all of the lipids which behave as boundary. This effect is likely due, according to the MD simulations, to the preference of AK13 to locate in closer vicinity to M2TM compared to Amt as well as the stronger ionic interactions of Amt primary ammonium group with phosphate groups, compared with the secondary buried ammonium group in AK13.<br>


2020 ◽  
Author(s):  
Dongdi Li ◽  
Adam M. Damry ◽  
James R. Petrie ◽  
Thomas Vanhercke ◽  
Surinder P. Singh ◽  
...  

ABSTRACTMarine algae are a major source of omega (ω)-3 long-chain polyunsaturated fatty acids (ω3-LCPUFAs), which are conditionally essential nutrients in humans and a target for industrial production. The biosynthesis of these molecules in marine algae begins with the desaturation of fatty acids by Δ6-desaturases and enzymes from different species display a range of specificities towards ω3 and ω6 LCPUFAs. In the absence of a molecular structure, the structural basis for the variable substrate specificity of Δ6-desaturases is poorly understood. Here we have conducted a consensus mutagenesis and ancestral protein reconstruction-based analysis of the Δ6-desaturase family, focusing on the ω3-specific Δ6-desaturase from Micromonas pusilla (MpΔ6des) and the bispecific (ω3/ω6) Δ6-desaturase from Ostreococcus tauri (OtΔ6des). Our characterization of consensus amino acid substitutions in MpΔ6des revealed that residues in diverse regions of the protein, such as the N-terminal cytochrome b5 domain, can make important contributions to determining substrate specificity. Ancestral protein reconstruction also suggests that some extant Δ6-desaturases, such as OtΔ6des, could have adapted to different environmental conditions by losing specificity for ω3-LCPUFAs. This dataset provides a map of regions within Δ6-desaturases that contribute to substrate specificity and could facilitate future attempts to engineer these proteins for use in biotechnology.


2020 ◽  
Author(s):  
Vladimir Katev ◽  
Zahari Vinarov ◽  
Slavka S. Tcholakova

Despite the widespread use of lipid excipients in both academic research and oral formulation development, rational selection guidelines are still missing. In the current study, we aimed to establish a link between the molecular structure of commonly used polar lipids and drug solubilization in biorelevant media. We studied the effect of 26 polar lipids of the fatty acid, phospholipid or monoglyceride type on the solubilization of fenofibrate in a two-stage <i>in vitro</i> GI tract model. The main trends were checked also with progesterone and danazol.<br>Based on their fenofibrate solubilization efficiency, the polar lipids can be grouped in 3 main classes. Class 1 substances (n = 5) provide biggest enhancement of drug solubilization (>10-fold) and are composed only by unsaturated compounds. Class 2 materials (n = 10) have an intermediate effect (3-10 fold increase) and are composed primarily (80 %) of saturated compounds. Class 3 materials (n = 11) have very low or no effect on drug solubilization and are entirely composed of saturated compounds.<br>The observed behaviour of the polar lipids was rationalized by using two classical physicochemical parameters: the acyl chain phase transition temperature (<i>T</i><sub>m</sub>) and the critical micellar concentration (CMC). Hence, the superior performance of class 1 polar lipids was explained by the double bonds in their acyl chains, which: (1) significantly decrease <i>T</i><sub>m</sub>, allowing these C18 lipids to form colloidal aggregates and (2) prevent tight packing of the molecules in the aggregates, resulting in bigger volume available for drug solubilization. Long-chain (C18) saturated polar lipids had no significant effect on drug solubilization because their <i>T</i><sub>m</sub> was much higher than the temperature of the experiment (<i>T</i> = 37 C) and, therefore, their association in colloidal aggregates was limited. On the other end of the spectrum, the short chain octanoic acid manifested a high CMC (50 mM), which had to be exceeded in order to enhance drug solubilization. When these two parameters were satisfied (C > CMC, <i>T</i><sub>m</sub> < <i>T</i><sub>exp</sub>), the increase of the polar lipid chain length increased the drug solubilization capacity (similarly to classical surfactants), due to the decreased CMC and bigger volume available for solubilization.<br>The hydrophilic head group also has a dramatic impact on the drug solubilization enhancement, with polar lipids performance decreasing in the order: choline phospholipids > monoglycerides > fatty acids.<br>As both the acyl chain length and the head group type are structural features of the polar lipids, and not of the solubilized drugs, the impact of <i>T</i><sub>m</sub> and CMC on solubilization by polar lipids should hold true for a wide variety of hydrophobic molecules. The obtained mechanistic insights can guide rational drug formulation development and thus support modern drug discovery pipelines.<br>


2020 ◽  
Author(s):  
Vladimir Katev ◽  
Zahari Vinarov ◽  
Slavka S. Tcholakova

Despite the widespread use of lipid excipients in both academic research and oral formulation development, rational selection guidelines are still missing. In the current study, we aimed to establish a link between the molecular structure of commonly used polar lipids and drug solubilization in biorelevant media. We studied the effect of 26 polar lipids of the fatty acid, phospholipid or monoglyceride type on the solubilization of fenofibrate in a two-stage <i>in vitro</i> GI tract model. The main trends were checked also with progesterone and danazol.<br>Based on their fenofibrate solubilization efficiency, the polar lipids can be grouped in 3 main classes. Class 1 substances (n = 5) provide biggest enhancement of drug solubilization (>10-fold) and are composed only by unsaturated compounds. Class 2 materials (n = 10) have an intermediate effect (3-10 fold increase) and are composed primarily (80 %) of saturated compounds. Class 3 materials (n = 11) have very low or no effect on drug solubilization and are entirely composed of saturated compounds.<br>The observed behaviour of the polar lipids was rationalized by using two classical physicochemical parameters: the acyl chain phase transition temperature (<i>T</i><sub>m</sub>) and the critical micellar concentration (CMC). Hence, the superior performance of class 1 polar lipids was explained by the double bonds in their acyl chains, which: (1) significantly decrease <i>T</i><sub>m</sub>, allowing these C18 lipids to form colloidal aggregates and (2) prevent tight packing of the molecules in the aggregates, resulting in bigger volume available for drug solubilization. Long-chain (C18) saturated polar lipids had no significant effect on drug solubilization because their <i>T</i><sub>m</sub> was much higher than the temperature of the experiment (<i>T</i> = 37 C) and, therefore, their association in colloidal aggregates was limited. On the other end of the spectrum, the short chain octanoic acid manifested a high CMC (50 mM), which had to be exceeded in order to enhance drug solubilization. When these two parameters were satisfied (C > CMC, <i>T</i><sub>m</sub> < <i>T</i><sub>exp</sub>), the increase of the polar lipid chain length increased the drug solubilization capacity (similarly to classical surfactants), due to the decreased CMC and bigger volume available for solubilization.<br>The hydrophilic head group also has a dramatic impact on the drug solubilization enhancement, with polar lipids performance decreasing in the order: choline phospholipids > monoglycerides > fatty acids.<br>As both the acyl chain length and the head group type are structural features of the polar lipids, and not of the solubilized drugs, the impact of <i>T</i><sub>m</sub> and CMC on solubilization by polar lipids should hold true for a wide variety of hydrophobic molecules. The obtained mechanistic insights can guide rational drug formulation development and thus support modern drug discovery pipelines.<br>


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 597 ◽  
Author(s):  
Changsuk Oh ◽  
T. Doohun Kim ◽  
Kyeong Kyu Kim

Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.


FEBS Letters ◽  
2005 ◽  
Vol 579 (12) ◽  
pp. 2744-2748 ◽  
Author(s):  
Sutthicha Na-Ranong ◽  
Kobkul Laoteng ◽  
Prasat Kittakoop ◽  
Morakot Tantichareon ◽  
Supapon Cheevadhanarak

2011 ◽  
Vol 64 (6) ◽  
pp. 798 ◽  
Author(s):  
David I. Fernandez ◽  
Marc-Antoine Sani ◽  
Frances Separovic

The interactions of the antimicrobial peptide, maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH2) and two analogues, with model phospholipid membranes have been studied using solid-state NMR and circular dichroism spectroscopy. Maculatin 1.1 and the P15G and P15A analogues displayed minimal secondary structure in water, but with zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles displayed a significant increase in α-helical content. In mixed phospholipid vesicles of DMPC and anionic dimyristoylphosphatidylglycerol (DMPG), each peptide was highly structured with ~80% α-helical content. In DMPC vesicles, the native peptide displayed moderate head group interaction and significant perturbation of the lipid acyl chains. In DMPC/DMPG vesicles, maculatin 1.1 promoted formation of a DMPG-enriched phase and moderately increased disorder towards acyl chain ends of DMPC in the mixed bilayer. Both analogues showed reduced phospholipid head group interactions with DMPC but displayed significant interactions with the mixed lipid system. These effects support the preferential activity of these antimicrobial peptides for bacterial membranes.


2016 ◽  
Vol 18 (38) ◽  
pp. 26998-26998
Author(s):  
Sai J. Ganesan ◽  
Hongcheng Xu ◽  
Silvina Matysiak

Correction for ‘Effect of lipid head group interactions on membrane properties and membrane-induced cationic β-hairpin folding’ by Sai J. Ganesan et al., Phys. Chem. Chem. Phys., 2016, 18, 17836–17850.


Sign in / Sign up

Export Citation Format

Share Document