scholarly journals Combinatorial metabolic engineering platform enabling stable overproduction of lycopene from carbon dioxide by cyanobacteria

2020 ◽  
Author(s):  
George M. Taylor ◽  
John T. Heap

AbstractCyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms representing ideal biocatalysts for CO2 capture and conversion, in principle. In practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Laboratory evolution suppressed variants causing metabolic burden in Synechocystis, leading to expected genetic instability. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random overproduced the valuable terpenoid lycopene from atmospheric CO2 over many generations, apparently overcoming the trade-off between stability and productivity. This first large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.

2021 ◽  
Author(s):  
George M Taylor ◽  
Andrew Hitchcock ◽  
John T Heap

Abstract Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peiran Zhang ◽  
Joseph Rufo ◽  
Chuyi Chen ◽  
Jianping Xia ◽  
Zhenhua Tian ◽  
...  

AbstractThe ability to precisely manipulate nano-objects on a large scale can enable the fabrication of materials and devices with tunable optical, electromagnetic, and mechanical properties. However, the dynamic, parallel manipulation of nanoscale colloids and materials remains a significant challenge. Here, we demonstrate acoustoelectronic nanotweezers, which combine the precision and robustness afforded by electronic tweezers with versatility and large-field dynamic control granted by acoustic tweezing techniques, to enable the massively parallel manipulation of sub-100 nm objects with excellent versatility and controllability. Using this approach, we demonstrated the complex patterning of various nanoparticles (e.g., DNAs, exosomes, ~3 nm graphene flakes, ~6 nm quantum dots, ~3.5 nm proteins, and ~1.4 nm dextran), fabricated macroscopic materials with nano-textures, and performed high-resolution, single nanoparticle manipulation. Various nanomanipulation functions, including transportation, concentration, orientation, pattern-overlaying, and sorting, have also been achieved using a simple device configuration. Altogether, acoustoelectronic nanotweezers overcome existing limitations in nano-manipulation and hold great potential for a variety of applications in the fields of electronics, optics, condensed matter physics, metamaterials, and biomedicine.


2021 ◽  
Vol 69 (4) ◽  
pp. 345-350
Author(s):  
Divas Karimanzira ◽  
Thomas Rauschenbach

Abstract Population rise, climate change, soil degradation, water scarcity, and food security require efficient and sustainable food production. Aquaponics is a highly efficient way of farming and is becoming increasingly popular. However, large scale aquaponics still lack stability, standardization and proof of economical profitability. The EU-INAPRO project helps to overcome these limitations by introducing digitization, enhanced technology, and developing standardized modular scalable solutions and demonstrating the viability of large aquaponics. INAPRO is based on an innovation a double water recirculation system (DRAPS), one for fish, and the other one for crops. In DRAPS, optimum conditions can be set up individually for fish and crops to increase productivity of both. Moreover, the integration of digital technologies and data management in the aquaculture production and processing systems will enable full traceability and transparency in the processes, increasing consumers’ trust in aquaculture products. In this paper, the innovations and the digitization approach will be introduced and explained and the key benefits of the system will be emphasized.


1995 ◽  
Vol 409 ◽  
Author(s):  
W. C. Morrey ◽  
L. T. Wille

AbstractUsing large-scale molecular dynamics simulation on a massively parallel computer, we have studied the initiation of cracking in a Monel-like alloy of Cu-Ni. In a low temperature 2D sample, fracture from a notch starts at a little beyond 2.5% critical strain when the propagation direction is perpendicular to a cleavage plane. We discuss a method of characterizing crack tip position using a measure of area around the crack tip.


2017 ◽  
Vol 38 (3) ◽  
pp. 338-353 ◽  
Author(s):  
Bishnu Dulal ◽  
Gary Mundy ◽  
Rojee Sawal ◽  
Pooja Pandey Rana ◽  
Kenda Cunningham

Background: Suaahara, a large-scale integrated program, aimed to improve diets and nutritional status among women and children, in part by facilitating enhanced homestead food production (EHFP). Objective: This study examines associations between EHFP and maternal and child dietary diversity and variations by season and agroecological zone (AEZ): mountains and terai. Methods: We used data from household monitoring surveys (n = 2101 mothers; n = 994 children, 6-23 months), which included a 7-day dietary recall and maternal report on participation in 5 EHFP activities—received vegetable seeds, chicks, and technical support and participated in training and EHFP groups. We constructed binary variables for each activity and a scale (0-5) summing participation. For dietary diversity, we used the Women’s Dietary Diversity Score using 10 food groups and 7 food groups for child diets. Multivariable linear regression analyses were used to assess associations between EHFP participation and dietary diversity by season and AEZ, controlling for potential confounders and clustering. Results: In adjusted models, we found positive associations between dietary diversity and chicks, technical support, and EHFP beneficiary groups; the magnitude of the associations varied by season and AEZ. The degree of participation in 5 EHFP activities was positively associated with maternal dietary diversity in the terai (β = .24, P < .001) and mountains (β = .12, P = .01) and child dietary diversity in the terai (β = .35, P < .001) during the winter. No associations were found in the rainy season. Conclusion: Our findings highlight the potential for EHFP to address dietary diversity constraints among this population. Variation by subnational setting and seasonality suggest that policies and programs should be contextualized.


Author(s):  
Christopher Cammies ◽  
David Mytton ◽  
Rosemary Crichton

AbstractAquaponics is a food production system which connects recirculating aquaculture (fish) to hydroponics (plants) systems. Although aquaponics has the potential to improve soil conditions by reducing erosion and nutrient loss and has been shown to reduce food production related carbon emissions by up to 73%, few commercial aquaponics projects in the EU and UK have been successful. Key barriers to commercial success are insufficient initial investment, an uncertain and complex regulatory environment, and the lack of projects operating on a large scale able to demonstrate profitability. In this paper, we use the UK as a case study to discuss the legal and economic barriers to the success of commercial aquaponics in the EU. We also propose three policies: (1) making aquaponics eligible for the new system of Environmental Land Management grants; (2) making aquaponics eligible for organic certification; and (3) clarifying and streamlining the aquaponics licence application process. The UK’s departure from the EU presents a unique opportunity to review agricultural regulations and subsidies, which in turn could provide evidence that similar reforms are needed in the EU.


Author(s):  
Martin Schreiber ◽  
Pedro S Peixoto ◽  
Terry Haut ◽  
Beth Wingate

This paper presents, discusses and analyses a massively parallel-in-time solver for linear oscillatory partial differential equations, which is a key numerical component for evolving weather, ocean, climate and seismic models. The time parallelization in this solver allows us to significantly exceed the computing resources used by parallelization-in-space methods and results in a correspondingly significantly reduced wall-clock time. One of the major difficulties of achieving Exascale performance for weather prediction is that the strong scaling limit – the parallel performance for a fixed problem size with an increasing number of processors – saturates. A main avenue to circumvent this problem is to introduce new numerical techniques that take advantage of time parallelism. In this paper, we use a time-parallel approximation that retains the frequency information of oscillatory problems. This approximation is based on (a) reformulating the original problem into a large set of independent terms and (b) solving each of these terms independently of each other which can now be accomplished on a large number of high-performance computing resources. Our results are conducted on up to 3586 cores for problem sizes with the parallelization-in-space scalability limited already on a single node. We gain significant reductions in the time-to-solution of 118.3× for spectral methods and 1503.0× for finite-difference methods with the parallelization-in-time approach. A developed and calibrated performance model gives the scalability limitations a priori for this new approach and allows us to extrapolate the performance of the method towards large-scale systems. This work has the potential to contribute as a basic building block of parallelization-in-time approaches, with possible major implications in applied areas modelling oscillatory dominated problems.


Sign in / Sign up

Export Citation Format

Share Document