scholarly journals High affinity of Skp to OmpC revealed by single-molecule detection

2020 ◽  
Author(s):  
Sichen Pan ◽  
Chen Yang ◽  
Xin Sheng Zhao

AbstractOuter membrane proteins (OMPs) are essential to Gram-negative bacteria, and they need molecular chaperones to prevent from aggregation in periplasm during the OMPs biogenesis. Seventeen kilodalton protein (Skp) is the major protein for this purpose. Here we used singlemolecule detection (SMD) to study the stoichiometry modulation of Skp in binding with outer membrane protein C (OmpC) from Escherichia coli. To accomplish our task, we developed the tool of portion selectively chosen fluorescence correlation spectroscopy (pscFCS). We found that Skp binds OmpC with high affinity. The half concentration for Skp to form homotrimer Skp3 (C1/2) was measured to be 250 nM. Under the Skp concentrations far below C1/2 OmpC can recruit Skp monomers to form OmpC·Skp3. The affinity of the process is in picomolar range, indicating that the trimerization of Skp in OmpC·Skp3 complex is induced by OmpC-Skp interaction even though free Skp3 is rarely present. In the concentration range that Skp3 is the predominant form, OmpC may directly interact with Skp3. Under micro-molar concentrations of Skp, the formation of OmpC·(Skp3)2 was observed. Our results suggest that the fine-tuned modulation of Skp composition stoichiometry plays an important role in the safe-guarding and quality control mechanism of OMPs in the periplasm.

2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Anjali Gupta ◽  
Jagadish Sankaran ◽  
Thorsten Wohland

Abstract Fluorescence correlation spectroscopy (FCS) is a well-established single-molecule method used for the quantitative spatiotemporal analysis of dynamic processes in a wide range of samples. It possesses single-molecule sensitivity but provides ensemble averaged molecular parameters such as mobility, concentration, chemical reaction kinetics, photophysical properties and interaction properties. These parameters have been utilized to characterize a variety of soft matter systems. This review provides an overview of the basic principles of various FCS modalities, their instrumentation, data analysis, and the applications of FCS to soft matter systems.


2020 ◽  
Author(s):  
Sachith D. Gunasinghe ◽  
Kirstin D. Elgass ◽  
Toby D. M. Bell ◽  
Trevor Lithgow

Abstract In recent years Super-resolution microscopy has become an invaluable tool to noninvasively interrogate the membrane architecture of bacteria to study the spatial organization of proteins associated with membranes, which in turn help us to understand how bacteria have evolved to exploit environmental niches. Model systems like Escherichia coli and Caulobacter cresentus have been used to study the spatiotemporal organization of membrane proteins. Like most gram-negative bacteria, the outer membrane of E.coli is populated with β-barrel proteins, which serve as selective channels where exchange of small molecules take place. Surface exposed domains in these channels provide means to fluorescently label and utilise them for fluorescent microscopy studies to investigate their spatial organization at the outer membrane. Here, we describe a methodology to fluorescently label outer membrane proteins in E.coli and study their spatial organization using direct stochastic optical reconstruction microscopy (dSTORM).


1980 ◽  
Vol 30 (3) ◽  
pp. 709-717
Author(s):  
Marilyn R. Loeb ◽  
David H. Smith

The outer membrane protein composition of 50 disease isolates of Haemophilus influenzae has been determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All strains, including 28 strains of serotype b , one strain each of serotypes a, c, d, e , and f , and 17 untypable strains, had an outer membrane protein composition typical of gram-negative bacteria, i.e., these membranes contained two to three dozen proteins with four to six proteins accounting for most of their protein content. Variation in the mobility of these major outer membrane proteins from strain to strain was common but not universal; the observed patterns provided useful data and new insight into the epidemiology of type b disease. The basic findings can be summarized as follows: (i) All 50 strains possessed three proteins (one minor and two major) each having identical mobilities. The other proteins, both major and minor, varied in mobility. (ii) All type b strains possessed a fourth (major) protein of identical mobility. (iii) The 28 type b strains, on the basis of the mobility of the six major outer membrane proteins, could be divided into eight subtypes. Of all the other strains examined, both typable and untypable, only the serotype a strain belonged to one of these subtypes. (iv) The untypable strains showed considerable variation in the mobilities of their major outer membrane proteins. Of these 17 strains, 13 had an additional major outer membrane protein not present in encapsulated strains. (v) The outer membrane protein composition of a single strain remained unchanged after many passages on solid media, but varied with the growth phase. (vi) The outer membrane protein composition of isolates obtained from nine patients during an epidemic of type b meningitis varied, indicating that a single strain was not responsible for the epidemic. At least five different strains were responsible for these nine cases. (vii) Identical outer membrane protein compositions were observed in the following: in a type b strain and a mutant of this strain deficient in capsule production, indicating that the level of capsule synthesis is not obviously related to outer membrane protein composition; in type b strains isolated from different anatomic sites of patients acutely ill with meningitis, indicating that the strain associated with bacteremia is the same as that isolated from the cerebrospinal fluid; in type b strains isolated from siblings who contracted meningitis at about the same time, indicating infection with the same strain; and in type b strains isolated from the initial and repeat infection of a single patient, suggesting that reinfection was due to the same strain.


2020 ◽  
Vol 117 (31) ◽  
pp. 18737-18743 ◽  
Author(s):  
Elizabeth M. Hart ◽  
Meera Gupta ◽  
Martin Wühr ◽  
Thomas J. Silhavy

The outer membrane (OM) of gram-negative bacteria confers innate resistance to toxins and antibiotics. Integral β-barrel outer membrane proteins (OMPs) function to establish and maintain the selective permeability of the OM. OMPs are assembled into the OM by the β-barrel assembly machine (BAM), which is composed of one OMP—BamA—and four lipoproteins—BamB, C, D, and E. BamB, C, and E can be removed individually with only minor effects on barrier function; however, depletion of either BamA or BamD causes a global defect in OMP assembly and results in cell death. We have identified a gain-of-function mutation,bamAE470K, that bypasses the requirement for BamD. AlthoughbamD::kanbamAE470Kcells exhibit growth and OM barrier defects, they assemble OMPs with surprising robustness. Our results demonstrate that BamD does not play a catalytic role in OMP assembly, but rather functions to regulate the activity of BamA.


Sign in / Sign up

Export Citation Format

Share Document