scholarly journals Oxygen transfer characteristics of a hollow fiber dialyser: toward possible repurposing of dialysers as blood oxygenators in the context of constrained availability of respiratory support

Author(s):  
David M. Rubin ◽  
Neil T. Stacey ◽  
Tonderayi Matambo ◽  
Diane Hildebrandt

The mass transfer characteristics for oxygen from the gas phase to blood in a hollow fiber membrane dialyser was investigated in vitro with a view to using such devices to effect respiratory support in patients with viral pneumonia and acute respiratory distress syndrome. In our in vitro experiments, which were severely curtailed by prevailing circumstances, we used water as a substitute on the blood side. The water was saturated rapidly indicating that the system was flow limited rather than diffusion limited for oxygen transfer. Using these findings, we estimated the expected performance with blood and the results suggest that two hollow fiber membrane dialysers operating in parallel with a pure oxygen gas supply running counter-current to the blood flow, could supply up to 40% of the total required oxygen demand rate in an adult patient. While not studied, carbon dioxide elimination is likely to be feasible as well. It is thus possible that hollow fiber dialysis units operating with suitable roller pumps in a veno-venous access configuration, could serve as a cost-effective and readily available alternative or adjunct for respiratory support in the face of severe resource constraints. Verification and extension of our study is needed by well resourced laboratories who are still able to function during this unprecedented period of restrictions. If, after further studies and clinical considerations, this approach appears feasible, then consideration may be given to clinical deployment of this technique in desperate situations where no alternative exists to preserve life.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
David M. Rubin ◽  
Neil T. Stacey ◽  
Tonderayi Matambo ◽  
Claudia Do Vale ◽  
Martin J. Sussman ◽  
...  

The COVID-19 pandemic has highlighted resource constraints in respiratory support. The oxygen transfer characteristics of a specific hollow fiber membrane dialyser was investigated with a view to repurposing the device as a low-cost, readily available blood oxygenator. Oxygen transfer in a low-flux hollow fiber dialyser with a polysulfone membrane was studied by passing first water and then blood through the dialyser in countercurrent to high-purity oxygen. Oxygen transfer rates of about 15% of the nominal 250 ml (STP)/min of a typical adult oxygen consumption rate were achieved for blood flow rates of 500 ml/min. Using two such dialysis devices in parallel could provide up to 30% of the nominal oxygen consumption. Specific hollow fiber dialysis devices operating with suitable pumps in a veno-venous access configuration could provide a cost-effective and readily available supplementation of respiratory support in the face of severe resource constraints.


ASAIO Journal ◽  
1994 ◽  
Vol 40 (4) ◽  
pp. 990-996 ◽  
Author(s):  
Steven N. Vaslef ◽  
Lyle F. Mockros ◽  
Robert W. Anderson ◽  
Ronald J. Leonard

2016 ◽  
Vol 87 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Chunyan Ma ◽  
Xiaoqian Wu ◽  
Zhenhong Liu

Filtration performance and fouling behavior of a five-bore hollow fiber membrane was investigated in a membrane bioreactor (MBR) treating printing and dyeing wastewater. A normal single-bore hollow fiber membrane module was used in the same bioreactor for comparison. During an operation over 30 days, the results of chemical oxygen demand (COD) and color removals demonstrated that the five-bore membrane was favorable for this wastewater treatment. The critical flux ( Jc) of the five-bore membrane and the single-bore membrane was determined at 21 and 15 L/(m2·h), respectively, using a flux-step method. During a steady running at sub-critical flux of 10 L/(m2·h) without cleaning for 50 days, the average increasing rates of trans-membrane pressure (TMP) for five-bore and single-bore membranes were 0.356 kPa/d and 0.444 kPa/d, respectively, indicating that the five-bore membrane had better fouling resistance. The total resistance values of five-bore membrane and single-bore membrane were 8.68 and 14.1 m−1, respectively. Scanning electron microscope (SEM) and atomic force microscope (AFM) results confirmed the cake layer resistance for five-bore membrane was much lower than single-bore membrane. It was expected that the membrane structure, especially the membrane diameter, influenced the anti-fouling property of five-bore membrane.


2020 ◽  
Vol 20 (1) ◽  
pp. 78-85 ◽  
Author(s):  
Anxin Liu ◽  
Zhiquan Sun ◽  
Qier Liu ◽  
Ning Zhu ◽  
Shigang Wang

The advancement of cardiac surgery benefits from the continual technological progress of cardiopulmonary bypass (CPB). Every improvement in the CPB technology requires further clinical and laboratory tests to prove its safety and effectiveness before it can be widely used in clinical practice. In order to reduce the priming volume and eliminate a separate arterial filter in the CPB circuit, several manufacturers developed novel hollow-fiber membrane oxygenators with integrated arterial filters (IAF). Clinical and experimental studies demonstrated that an oxygenator with IAF could reduce total priming volume, blood donor exposure and gaseous microemboli delivery to the patient. It can be easily set up and managed, simplifying the CPB circuit without sacrificing safety. An oxygenator with IAF is expected to be more beneficial to the patients with low body weight and when using a minimized extracorporeal circulation system. The aim of this review manuscript was to discuss briefly the concept of integration, the current oxygenators with IAF, and the in-vitro / in-vivo performance of the oxygenators with IAF.


1991 ◽  
Vol 71 (3) ◽  
pp. 206-207 ◽  
Author(s):  
Okihiko Hirasa ◽  
Hisao Ichijo ◽  
Aizo Yamauchi

2005 ◽  
Vol 14 (10) ◽  
pp. 749-756 ◽  
Author(s):  
Oleg Pakhomov ◽  
Lionel Martignat ◽  
Jiri Honiger ◽  
Béatrice Clémenceau ◽  
Pierre Säi ◽  
...  

As the risk of porcine endogenous retrovirus (PERV) infection is a major obstacle to the xenotransplantation of porcine tissue, we investigated whether an AN69 hollow fibre membrane, used for islets of Langerhans transplantation, could prevent the transfer of PERVs and thus reduce the risk of PERV infection. PK15 cells were used as a PERV source. A specific and highly sensitive RCR was used for detection of a PERV provirus DNA (gag region) and a porcine mtDNA. Human U293 cells were incubated in vitro with encapsulated PK15 cells, concentrated encapsulated PK15 supernatant, or concentrated PK15 supernatant as a control. CD1 mice were implanted in vivo with encapsulated PK15 cells or injected with PK15 supernatant. We found no infection in human cells incubated with either encapsulated PK15 supernatant or in 10 out of 11 samples after coincubation with encapsulated PK15 cells. Infection of human cells was, however, detected in 1 out of 11 samples after coincubation with encapsulated PK15 cells. The presence of PERV provirus DNA and porcine mtDNA was detected in all the investigated tissues of the mice injected with PK15 supernatant and in various tissues of the mice implanted with encapsulated PK15 cells. Four weeks after the last injection of PK15 supernatant or a fiber explantation, no mouse showed any presence of PERV provirus DNA or porcine mtDNA. Our results demonstrate that AN69 hollow fiber membrane will reduce but not abolish the risk of PERV infection. Because the real risk of PERV infection still remains unknown, it is necessary to investigate further the real protection that could be provided by hollow fibers to ensure the safety of clinical xenotransplantation.


2010 ◽  
Vol 362 (1-2) ◽  
pp. 172-183 ◽  
Author(s):  
M. Ertan Taskin ◽  
Katharine H. Fraser ◽  
Tao Zhang ◽  
Bartley P. Griffith ◽  
Zhongjun J. Wu

Sign in / Sign up

Export Citation Format

Share Document