scholarly journals Artificial intelligence applied on chest X-ray can aid in the diagnosis of COVID-19 infection: a first experience from Lombardy, Italy

Author(s):  
Isabella Castiglioni ◽  
Davide Ippolito ◽  
Matteo Interlenghi ◽  
Caterina Beatrice Monti ◽  
Christian Salvatore ◽  
...  

AbstractObjectivesWe tested artificial intelligence (AI) to support the diagnosis of COVID-19 using chest X-ray (CXR). Diagnostic performance was computed for a system trained on CXRs of Italian subjects from two hospitals in Lombardy, Italy.MethodsWe used for training and internal testing an ensemble of ten convolutional neural networks (CNNs) with mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals. We then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain reaction served as reference standard.ResultsAt 10-fold cross-validation, our AI model classified COVID-19 and non COVID-19 patients with 0.78 sensitivity (95% confidence interval [CI] 0.74–0.81), 0.82 specificity (95% CI 0.78–0.85) and 0.89 area under the curve (AUC) (95% CI 0.86–0.91). For the independent dataset, AI showed 0.80 sensitivity (95% CI 0.72–0.86) (59/74), 0.81 specificity (29/36) (95% CI 0.73–0.87), and 0.81 AUC (95% CI 0.73– 0.87). Radiologists’ reading obtained 0.63 sensitivity (95% CI 0.52–0.74) and 0.78 specificity (95% CI 0.61–0.90) in one centre and 0.64 sensitivity (95% CI 0.52–0.74) and 0.86 specificity (95% CI 0.71–0.95) in the other.ConclusionsThis preliminary experience based on ten CNNs trained on a limited training dataset shows an interesting potential of AI for COVID-19 diagnosis. Such tool is in training with new CXRs to further increase its performance.Key pointsArtificial intelligence based on convolutional neural networks was preliminary applied to chest-X-rays of patients suspected to be infected by COVID-19.Convolutional neural networks trained on a limited dataset of 250 COVID-19 and 250 non-COVID-19 were tested on an independent dataset of 110 patients suspected for COVID-19 infection and provided a balanced performance with 0.80 sensitivity and 0.81 specificity.Training on larger multi-institutional datasets may allow this tool to increase its performance.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Isabella Castiglioni ◽  
Davide Ippolito ◽  
Matteo Interlenghi ◽  
Caterina Beatrice Monti ◽  
Christian Salvatore ◽  
...  

Abstract Background We aimed to train and test a deep learning classifier to support the diagnosis of coronavirus disease 2019 (COVID-19) using chest x-ray (CXR) on a cohort of subjects from two hospitals in Lombardy, Italy. Methods We used for training and validation an ensemble of ten convolutional neural networks (CNNs) with mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals (Centres 1 and 2). We then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain reaction served as the reference standard. Results At 10-fold cross-validation, our deep learning model classified COVID-19 and non-COVID-19 patients with 0.78 sensitivity (95% confidence interval [CI] 0.74–0.81), 0.82 specificity (95% CI 0.78–0.85), and 0.89 area under the curve (AUC) (95% CI 0.86–0.91). For the independent dataset, deep learning showed 0.80 sensitivity (95% CI 0.72–0.86) (59/74), 0.81 specificity (29/36) (95% CI 0.73–0.87), and 0.81 AUC (95% CI 0.73–0.87). Radiologists’ reading obtained 0.63 sensitivity (95% CI 0.52–0.74) and 0.78 specificity (95% CI 0.61–0.90) in Centre 1 and 0.64 sensitivity (95% CI 0.52–0.74) and 0.86 specificity (95% CI 0.71–0.95) in Centre 2. Conclusions This preliminary experience based on ten CNNs trained on a limited training dataset shows an interesting potential of deep learning for COVID-19 diagnosis. Such tool is in training with new CXRs to further increase its performance.


2020 ◽  
Vol 25 (6) ◽  
pp. 553-565 ◽  
Author(s):  
Boran Sekeroglu ◽  
Ilker Ozsahin

The detection of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), which is responsible for coronavirus disease 2019 (COVID-19), using chest X-ray images has life-saving importance for both patients and doctors. In addition, in countries that are unable to purchase laboratory kits for testing, this becomes even more vital. In this study, we aimed to present the use of deep learning for the high-accuracy detection of COVID-19 using chest X-ray images. Publicly available X-ray images (1583 healthy, 4292 pneumonia, and 225 confirmed COVID-19) were used in the experiments, which involved the training of deep learning and machine learning classifiers. Thirty-eight experiments were performed using convolutional neural networks, 10 experiments were performed using five machine learning models, and 14 experiments were performed using the state-of-the-art pre-trained networks for transfer learning. Images and statistical data were considered separately in the experiments to evaluate the performances of models, and eightfold cross-validation was used. A mean sensitivity of 93.84%, mean specificity of 99.18%, mean accuracy of 98.50%, and mean receiver operating characteristics–area under the curve scores of 96.51% are achieved. A convolutional neural network without pre-processing and with minimized layers is capable of detecting COVID-19 in a limited number of, and in imbalanced, chest X-ray images.


2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Buyut Khoirul Umri ◽  
Ema Utami ◽  
Mei P Kurniawan

Covid-19 menyerang sel-sel epitel yang melapisi saluran pernapasan sehingga dalam kasus ini dapat memanfaatkan gambar x-ray dada untuk menganalisis kesehatan paru-paru pada pasien. Menggunakan x-ray dalam bidang medis merupakan metode yang lebih cepat, lebih mudah dan tidak berbahaya yang dapat dimanfaatkan pada banyak hal. Salah satu metode yang paling sering digunakan dalam klasifikasi gambar adalah convolutional neural networks (CNN). CNN merupahan jenis neural network yang sering digunakan dalam data gambar dan sering digunakan dalam mendeteksi dan mengenali object pada sebuah gambar. Model arsitektur pada metode CNN juga dapat dikembangkan dengan transfer learning yang merupakan proses menggunakan kembali model pre-trained yang dilatih pada dataset besar, biasanya pada tugas klasifikasi gambar berskala besar. Tinjauan literature review ini digunakan untuk menganalisis penggunaan transfer learning pada CNN sebagai metode yang dapat digunakan untuk mendeteksi covid-19 pada gambar x-ray dada. Hasil sistematis review menunjukkan bahwa algoritma CNN dapat digunakan dengan akruasi yang baik dalam mendeteksi covid-19 pada gambar x-ray dada dan dengan pengembangan model transfer learning mampu mendapatkan performa yang maksimal dengan dataset yang besar maupun kecil.Kata Kunci—CNN, transfer learning, deteksi, covid-19Covid-19 attacks the epithelial cells lining the respiratory tract so that in this case it can utilize chest x-ray images to analyze the health of the lungs in patients. Using x-rays in the medical field is a faster, easier and harmless method that can be utilized in many ways. One of the most frequently used methods in image classification is convolutional neural networks (CNN). CNN is a type of neural network that is often used in image data and is often used in detecting and recognizing objects in an image. The architectural model in the CNN method can also be developed with transfer learning which is the process of reusing pre-trained models that are trained on large datasets, usually on the task of classifying large-scale images. This literature review review is used to analyze the use of transfer learning on CNN as a method that can be used to detect covid-19 on chest x-ray images. The systematic review results show that the CNN algorithm can be used with good accuracy in detecting covid-19 on chest x-ray images and by developing transfer learning models able to get maximum performance with large and small datasets.Keywords—CNN, transfer learning, detection, covid-19


Author(s):  
Puneet Gupta

Abstract— Pneumonia is a life-threatening infectious disease affecting one or both lungs in humans commonly caused by bacteria called Streptococcus pneumoniae. One in three deaths in India is caused due to pneumonia as reported by World Health Organization (WHO). Chest X-Rays which are used to diagnose pneumonia, need expert radiotherapists for evaluation. Thus, developing an automatic system for detecting pneumonia would be beneficial for treating the disease without any delay particularly in remote areas. Due to the success of deep learning algorithms in analyzing medical images, Convolutional Neural Networks (CNNs) have gained much attention for disease classification. In addition, features learned by pre-trained CNN models on large-scale datasets are much useful in image classification tasks. In this work, we appraise the functionality of pre-trained CNN models utilized as feature-extractors followed by different classifiers for the classification of abnormal and normal chest X-Rays. We analytically determine the optimal CNN model for the purpose. Statistical results obtained demonstrates that pretrained CNN models employed along with supervised classifier algorithms can be very beneficial in analyzing chest X-ray images, specifically to detect Pneumonia. In this project Transfer learning and a CNN Model is used to detect whether the person has pneumonia or not using chest x-ray.


Author(s):  
Alexandru Burlacu ◽  
Radu Crisan-Dabija ◽  
Iolanda Valentina Popa ◽  
Bogdan Artene ◽  
Vasile Birzu ◽  
...  

AbstractIn the current context of COVID-19 pandemic, a rapid and accessible screening tool based on image processing of chest X-rays (CXRs) using machine learning (ML) approaches would be much needed. Initially, we intended to create and validate an ML software solution able to discriminate on the basis of the CXR between SARS-CoV-2-induced bronchopneumonia and other bronchopneumonia etiologies.A systematic search of PubMed, Scopus and arXiv databases using the following search terms [“artificial intelligence” OR “deep learning” OR “neural networks”], AND [“COVID-19” OR “SARS-CoV-2”] AND [“chest X-ray” OR “CXR” OR “X-ray”] found 14 recent studies. Most of them declared to be able to confidently identify COVID-19 based on CXRs using deep neural networks. Firstly, weaknesses of artificial intelligence (AI) solutions were analyzed, tackling the issues with datasets (from both medical and technical points of view) and the vulnerability of used algorithms. Then, arguments were provided for why our study design is stronger and more realistic than the previously quoted papers, balancing the possible false expectations with facts.The authors consider that the potential of AI use in COVID-19 diagnosis on CXR is real. However, scientific community should be careful in interpreting statements, results and conclusions regarding AI use in imaging. It is therefore necessary to adopt standards for research and publication of data, because it seems that in the recent months scientific reality suffered manipulations and distortions. Also, a call for responsible approaches to the imaging methods in COVID-19 is raised. It seems mandatory to follow some rigorous approaches in order to provide with adequate results in daily routine. In addition, the authors intended to raise public awareness about the quality of AI protocols and algorithms and to encourage public sharing of as many CXR images with common quality standards.


2020 ◽  
Vol 112 (5) ◽  
pp. S50
Author(s):  
Zachary Eller ◽  
Michelle Chen ◽  
Jermaine Heath ◽  
Uzma Hussain ◽  
Thomas Obisean ◽  
...  

2019 ◽  
Vol 38 (5) ◽  
pp. 1197-1206 ◽  
Author(s):  
Hojjat Salehinejad ◽  
Errol Colak ◽  
Tim Dowdell ◽  
Joseph Barfett ◽  
Shahrokh Valaee

Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 31
Author(s):  
Joaquim de Moura ◽  
Lucía Ramos ◽  
Plácido L. Vidal ◽  
Jorge Novo ◽  
Marcos Ortega

The new coronavirus (COVID-19) is a disease that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). On 11 March 2020, the coronavirus outbreak has been labelled a global pandemic by the World Health Organization. In this context, chest X-ray imaging has become a remarkably powerful tool for the identification of patients with COVID-19 infections at an early stage when clinical symptoms may be unspecific or sparse. In this work, we propose a complete analysis of separability of COVID-19 and pneumonia in chest X-ray images by means of Convolutional Neural Networks. Satisfactory results were obtained that demonstrated the suitability of the proposed system, improving the efficiency of the medical screening process in the healthcare systems.


Author(s):  
Sarah Badr AlSumairi ◽  
Mohamed Maher Ben Ismail

Pneumonia is an infectious disease of the lungs. About one third to one half of pneumonia cases are caused by bacteria. Early diagnosis is a critical factor for a successful treatment process. Typically, the disease can be diagnosed by a radiologist using chest X-ray images. In fact, chest X-rays are currently the best available method for diagnosing pneumonia. However, the recognition of pneumonia symptoms is a challenging task that relies on the availability of expert radiologists. Such “human” diagnosis can be inaccurate and subjective due to lack of clarity and erroneous decision. Moreover, the error can increase more if the physician is requested to analyze tens of X-rays within a short period of time. Therefore, Computer-Aided Diagnosis (CAD) systems were introduced to support and assist physicians and make their efforts more productive. In this paper, we investigate, design, implement and assess customized Convolutional Neural Networks to overcome the image-based Pneumonia classification problem. Namely, ResNet-50 and DenseNet-161 models were inherited to design customized deep network architecture and improve the overall pneumonia classification accuracy. Moreover, data augmentation was deployed and associated with standard datasets to assess the proposed models. Besides, standard performance measures were used to validate and evaluate the proposed system.


Sign in / Sign up

Export Citation Format

Share Document