scholarly journals Carbon Sequestration Potential of Oil Palm Plantations in Southern Philippines

2020 ◽  
Author(s):  
Sheila Mae C. Borbon ◽  
Michael Arieh P. Medina ◽  
Jose Hermis P. Patricio ◽  
Angela Grace Toledo-Bruno

AbstractAside from the greenhouse gas reduction ability of palm oil-based biofuel as alternative to fossil fuels, another essential greenhouse gas mitigation ability of oil palm plantation is in terms of offsetting anthropogenic carbon emissions through carbon sequestration. In this context, this study was done to determine the carbon sequestration potential of oil palm plantations specifically in two areas in Mindanao, Philippines. Allometric equation was used in calculating the biomass of oil palm trunk. Furthermore, destructive methods were used to determine the biomass in other oil palm parts (fronds, leaves, and fruits). Carbon stocks from the other carbon pools in the oil palm plantations were measured which includes understory, litterfall, and soil. Results revealed that the average carbon stock in the oil palm plantations is 40.33 tC/ha. Majority of the carbon stock is found in the oil palm plant (53%), followed by soil (38%), litterfall (6%), and understory, (4%). The average carbon sequestration rate of oil palm plants is estimated to be 4.55 tC/ha/year. It is advised that oil palm expansions should be done on grasslands and barren lands instead of forest lands to avoid incurring “carbon debts”. It is also recommended that oil palms should be mixed with shrub crops species to enhance soil organic carbon as well as increase the aboveground biomass in oil palm plantations.

ACS Omega ◽  
2022 ◽  
Author(s):  
Veeraswamy Davamani ◽  
Ramasamy Sangeetha Piriya ◽  
Srirangarayan Subramanian Rakesh ◽  
Ettiyagounder Parameswari ◽  
Selvaraj Paul Sebastian ◽  
...  

Author(s):  
Abdullahi Jibrin ◽  
Sule Mohammed Zubairu ◽  
Aishatu Abdulkadir ◽  
Sakoma J Kaura ◽  
Amos Bitrus Baminda

This study provides a preliminary assessment of the biophysical potential for carbon sequestration. Quantification of carbon stock and estimation of carbon sequestration potential was carried out in the Kpashimi Forest Reserve, Niger state, Nigeria. Carbon stock was measured in the six vegetation communities existing in the study area. Forty-eight randomly selected 20 x 20 metre quadrats were established wherein data was collected from the main forest carbon pools; including above ground tree, below ground root, undergrowth (shrub grasses), dead wood, litter and soil organic carbon. Biomass of the respective pools was quantified by destructive sampling and use of allometric equations. Thereafter, biomass values were converted to carbon stock equivalent. Four satellite imageries TM, SPOT, ETM+, and NIGERIASAT-1 of 1987, 1994, 2001 and 2007 respectively were used to estimate vegetation cover and carbon stock change over 20 years. The results showed that average carbon stock density (Mg C/ha) of the vegetation communities was in the decreasing order; Riparian forest (123.58 ± 9.1), Savanna woodland (97.71 ± 8.2), Degraded forest (62.92 ± 6.1), Scrubland (36.28 ± 4.1), Grassland (18.22 ± 5.1), and bare surface (9.31 ± 3.1). Deforestation and forest degradation between 1987 and 2007 have resulted in emission of 240.2 Mg (ton) C ha-1 at an annual rate of 12.01 Mg C ha-1. This suggests that the study site has carbon sequestration potential of 240.2 Mg C ha-1 based on its capacity to increase carbon stock through restoration; back to speculated 1987 levels and even higher. Thus, the study recommends the need to analyse carbon offset project feasibility in the study area.


2003 ◽  
Vol 9 (8) ◽  
pp. 1193-1203 ◽  
Author(s):  
Steven Sleutel ◽  
Stefaan De Neve ◽  
Georges Hofman ◽  
Pascal Boeckx ◽  
Daan Beheydt ◽  
...  

2004 ◽  
Vol 31 (5) ◽  
pp. 415 ◽  
Author(s):  
Richard J. Williams ◽  
Lindsay B. Hutley ◽  
Garry D. Cook ◽  
Jeremy Russell-Smith ◽  
Andrew Edwards ◽  
...  

Tropical savannas cover a quarter of the Australian landmass and the biome represents a significant potential carbon sink. However, these savannas are subject to frequent and extensive fire. Fire regimes are likely to affect the productivity and carbon sequestration potential of savannas, through effects on both biomass and carbon emissions. The carbon sequestration potential has been estimated for some savanna sites by quantifying carbon storage in biomass and soil pools, and the fluxes to these pools. Using different techniques, previous work in these savannas has indicated that net ecosystem productivity [NEP, net primary productivity (NPP) less heterotrophic respiration] was about –3 t C ha–1 y–1 (i.e. a carbon sink). However, the impacts of fire were not accounted for in these calculations. Estimates of NEP have been combined with remotely-sensed estimates of area burnt and associated emissions for an extensive area of mesic savanna in Arnhem Land, NT, Australia. Combining NEP estimates with precise fire data provides an estimate of net biome productivity (NBP), a production index that includes carbon loss through disturbance (fire), and is thus a more realistic indicator of sequestration rate from this biome. This preliminary analysis suggests that NBP is approximately –1 t C ha–1 y–1 (i.e. a carbon sink). A reduction in the annual area burnt is likely to increase the sink size. Uncertainties surrounding these estimates of NBP and the implications of these uncertainties for land management in these extensive landscapes are discussed.


2016 ◽  
Vol 5 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Amber Ajani ◽  
Zafar Iqbal Shams

Carbon sequestration by trees is one of the most cost-effective and efficient methods to remove carbon dioxide from atmosphere since trees remove and store carbon at higher rates compared to other land covers. Carbon storage by trees typically ranges from 1 to 8 MgC ha-1 yr-1.The carbon is sequestered in different parts of the trees as biomass. The measurements of biomass provide reasonably accurate estimate of the amount of carbon that was removed from lower troposphere over the years. Therefore, the present study investigates and compares the carbon stock of native Azadirachta indica and exotic Conocarpus erectus, which are extensively cultivated in the campus of the University of Karachi, Pakistan. The above-ground and below-ground biomass of 327 trees of A. indica and 253 trees of C. erectus were estimated by using non-destructive method. The average carbon content of A. indica is calculated to be 662.32 + 1144.81 Kg while that of C. erectus is 192.70 + 322.60 Kg. The independent t-test analysis showed significant difference (p < 0.001) between the means of the carbon content of both the species. The carbon contents of two different species were also correlated with bole’s diameter at breast height (DBH) and tree’s height. The analysis demonstrated greater correlation between the carbon content and the DBH of both the species compared to that with their height. The study will help to understand the carbon sequestration potential of two different types of species for planting particularly in urban area of the world.INTERNATIONAL JOURNAL OF ENVIRONMENTVolume-5, Issue-2, March-May 2016, Page: 89-97


2021 ◽  
Vol 42 (3) ◽  
pp. 687-693
Author(s):  
S. Alom ◽  
◽  
R. Das ◽  
U. Baruah ◽  
S. Das ◽  
...  

Aim: To study the carbon sequestration process in tea based plantation system and to identify more potential carbon sequestration system amongst the tea based cropping system by studying carbon storage in different components of the plantation system. Methodology: The experiment was carried out in the Experimental Garden for Plantation Crops of Assam Agricultural University, Jorhat, Assam. Treatments were made in an on going, long term shade experiment on mature tea bushes, adapted to three levels of shades viz. tea as monoculture; Tea based cropping system with Areca palm and Tea with Albizzia odoratissima. Results: Among different tea plantations, tea-albizzia recorded superior performance, followed by tea-areca palm plantation in respect to biomass accumulation and carbon sequestration. Similarly, higher carbon stock was found in tea-albizzia plantations along with other physiological and edaphic parameters related to carbon sequestration attributed to an increase in carbon stock. Interpretation: Tea-albizzia plantation system has maximum potential for carbon offsetting from the atmosphere as well as carbon storage both above and below ground in the plantation ecosystem which might be helpful for future carbon management and economy as a whole.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rajeev Joshi

Regeneration patterns of species population can address climate change by adaptive evolution or by migrating association to survival in their favorable climate and finally decide the particular forest future. This research examined the status of regeneration and carbon sequestration potential in tropical Sal (Shorea robusta) forest of Kanchanpur district, Nepal. For the study, a total of 63 concentric sample plots were investigated by using systematic sampling with 0.5% sampling intensity. Regeneration status of forest was estimated by calculating the density of each species in each developmental phase. The above-ground carbon stock of trees species were estimated using allometric equations. The studied forests had good regeneration status and Shorea robusta was the dominant species in terms of regeneration and carbon stock. Ramnagar community forest had greater number of seedling, sapling and tree than that of the Ganesh community forest. Reverse J-shaped population curves were recorded at both the study sites. This study provided information about the regeneration status, structure, composition and carbon sequestration potential of tree species which is very necessary for conservation and sustainable management of community forests. Studies indicate that community management has increased the carbon stock of forests and also has promoted the productivity of forests by altering the structure and composition of the community forests.


Sign in / Sign up

Export Citation Format

Share Document