scholarly journals Cross-reactive neutralization of SARS-CoV-2 by serum antibodies from recovered SARS patients and immunized animals

Author(s):  
Yuanmei Zhu ◽  
Danwei Yu ◽  
Yang Han ◽  
Hongxia Yan ◽  
Huihui Chong ◽  
...  

AbstractThe current COVID-19 pandemic, caused by a novel coronavirus SARS-CoV-2, poses serious threats to public health and social stability, calling for urgent need for vaccines and therapeutics. SARS-CoV-2 is genetically close to SARS-CoV, thus it is important to define the between antigenic cross-reactivity and neutralization. In this study, we firstly analyzed 20 convalescent serum samples collected from SARS-CoV infected individuals during the 2003 SARS outbreak. All patient sera reacted strongly with the S1 subunit and receptor-binding domain (RBD) of SARS-CoV, cross-reacted with the S ectodomain, S1, RBD, and S2 proteins of SARS-CoV-2, and neutralized both SARS-CoV and SARS-CoV-2 S protein-driven infections. Multiple panels of antisera from mice and rabbits immunized with a full-length S and RBD immunogens of SARS-CoV were also characterized, verifying the cross-reactive neutralization against SARS-CoV-2. Interestingly, we found that a palm civet SARS-CoV-derived RBD elicited more potent cross-neutralizing responses in immunized animals than the RBD from a human SARS-CoV strain, informing a strategy to develop a universe vaccine against emerging CoVs.SummarySerum antibodies from SARS-CoV infected patients and immunized animals cross-neutralize SARS-CoV-2 suggests strategies for universe vaccines against emerging CoVs.

2020 ◽  
Vol 6 (45) ◽  
pp. eabc9999 ◽  
Author(s):  
Yuanmei Zhu ◽  
Danwei Yu ◽  
Yang Han ◽  
Hongxia Yan ◽  
Huihui Chong ◽  
...  

The current coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus genetically close to SARS-CoV. To investigate the effects of previous SARS-CoV infection on the ability to recognize and neutralize SARS-CoV-2, we analyzed 20 convalescent serum samples collected from individuals infected with SARS-CoV during the 2003 SARS outbreak. All patient sera reacted strongly with the S1 subunit and receptor binding domain (RBD) of SARS-CoV; cross-reacted with the S ectodomain, S1, RBD, and S2 proteins of SARS-CoV-2; and neutralized both SARS-CoV and SARS-CoV-2 S protein–driven infections. Analysis of antisera from mice and rabbits immunized with a full-length S and RBD immunogens of SARS-CoV verified cross-reactive neutralization against SARS-CoV-2. A SARS-CoV–derived RBD from palm civets elicited more potent cross-neutralizing responses in immunized animals than the RBD from a human SARS-CoV strain, informing strategies for development of universal vaccines against emerging coronaviruses.


Author(s):  
Seth J. Zost ◽  
Pavlo Gilchuk ◽  
Rita E. Chen ◽  
James Brett Case ◽  
Joseph X. Reidy ◽  
...  

Antibodies are a principal determinant of immunity for most RNA viruses and have promise to reduce infection or disease during major epidemics. The novel coronavirus SARS-CoV-2 has caused a global pandemic with millions of infections and hundreds of thousands of deaths to date1,2. In response, we used a rapid antibody discovery platform to isolate hundreds of human monoclonal antibodies (mAbs) against the SARS-CoV-2 spike (S) protein. We stratify these mAbs into five major classes based on their reactivity to subdomains of S protein as well as their cross-reactivity to SARS-CoV. Many of these mAbs inhibit infection of authentic SARS-CoV-2 virus, with most neutralizing mAbs recognizing the receptor-binding domain (RBD) of S. This work defines sites of vulnerability on SARS-CoV-2 S and demonstrates the speed and robustness of new antibody discovery methodologies.


2021 ◽  
Author(s):  
Sanath Kumar Janaka ◽  
Natasha M Clark ◽  
David T Evans ◽  
Joseph P Connor

AbstractBackgroundThe novel coronavirus SARS-CoV2 that causes COVID-19 has resulted in the death of more than 2.5 million people, but no cure exists. Although passive immunization with COVID-19 convalescent plasma (CCP) provides a safe and viable therapeutic option, the selection of optimal units for therapy in a timely fashion remains a barrier.Study design and methodsSince virus neutralization is a necessary characteristic of plasma that can benefit recipients, the neutralizing titers of plasma samples were measured using a retroviral-pseudotype assay. Binding antibody titers to the spike (S) protein were also determined by a clinically available serological assay (Ortho-Vitros total IG), and an in-house ELISA. The results of these assays were compared to a measurement of antibodies directed to the receptor binding domain (RBD) of the SARS-CoV2 S protein (Promega Lumit Dx).ResultsAll measures of antibodies were highly variable, but correlated, to different degrees, with each other. However, the anti-RBD antibodies correlated with viral neutralizing titers to a greater extent than the other antibody assays.DiscussionOur observations support the use of an anti-RBD assay such as the Lumit Dx assay, as an optimal predictor of the neutralization capability of CCP.


2020 ◽  
Author(s):  
Rimjhim Dasgupta

The current outbreak of viral pneumonia in the city of Wuhan, China, was caused by a novel coronavirus designated 2019-nCoV, as determined by sequencing the viral RNA genome. Among its genome, S protein is surface-exposed and mediates entry into host cells. Currently it is one of the main targets for designing antibodies (Abs), therapeutic and vaccine. Earlier studies stated that ACE2 (angiotensin converting enzyme 2) could facilitate S protein mediated entry for this newly emerged coronavirus. Here we have taken an attempt to compare the genetic structure of receptor binding domain within S protein of highly pathogenic human coronaviruses (special reference to 2019-nCoV) with Bat coronavirus RaTG13. We have compared 2019-nCov receptor binding domain (RBD) with other pathogenic human coronaviruses (MERS-CoV and SARS-CoV) and Bat coronavirus RaTG13. We found that it is closest to RaTG13 RBD than MERS-CoV and SARS-CoV. Our study shows that 2019-nCov RBD also has significant identity with pangolin S protein RBD. We have also predicted the amino acid residues within RDB those may play important role for ACE2 receptor interaction. We identified unique signature for furin cleavage in 2019-nCov S protein but not in of other pathogenic human coronaviruses (tested here), bat coronavirus RaTG13 or pangolin.


2020 ◽  
Author(s):  
Alejandro Flores-Alanis ◽  
Luisa Sandner-Miranda ◽  
Gabriela Delgado ◽  
Alejandro Cravioto ◽  
Rosario Morales-Espinosa

Abstract Objective: In December 2019 a novel coronavirus (SARS-CoV-2) that is causing the current COVID-19 pandemic was identified in Wuhan, China. Many questions have been raised about its origin and adaptation to humans. In the present work we performed a genetic analysis of the Spike glycoprotein (S) of SARS-CoV-2 and other related coronaviruses (CoVs) isolated from different hosts in order to trace the evolutionary history of this protein and the adaptation of SARS-CoV-2 to humans.Results: Based on the sequence analysis of the S gene, we suggest that the origin of SARS-CoV-2 is the result of recombination events between bat and pangolin CoVs. The hybrid SARS-CoV-2 ancestor jumped to humans and has been maintained by natural selection. Although the S protein of RaTG13 bat CoV has a high nucleotide identity with the S protein of SARS-CoV-2, the phylogenetic tree and the haplotype network suggest a non-direct parental relationship between these CoVs. Moreover, it is likely that the basic function of the receptor-binding domain (RBD) of S protein was acquired by the SARS-CoV-2 from the MP789 pangolin CoV by recombination and it has been highly conserved.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253551
Author(s):  
Sanath Kumar Janaka ◽  
Natasha M. Clark ◽  
David T. Evans ◽  
Huihui Mou ◽  
Michael Farzan ◽  
...  

Background The novel coronavirus SARS-CoV2 that causes COVID-19 has resulted in the death of more than 2.5 million people, but no cure exists. Although passive immunization with COVID-19 convalescent plasma (CCP) provides a safe and viable therapeutic option, the selection of optimal units for therapy in a timely fashion remains a barrier. Study design and methods Since virus neutralization is a necessary characteristic of plasma that can benefit recipients, the neutralizing titers of plasma samples were measured using a retroviral-pseudotype assay. Binding antibody titers to the spike (S) protein were also determined by a clinically available serological assay (Ortho-Vitros total IG), and an in-house ELISA. The results of these assays were compared to a measurement of antibodies directed to the receptor binding domain (RBD) of the SARS-CoV2 S protein (Promega Lumit Dx). Results All measures of antibodies were highly variable, but correlated, to different degrees, with each other. However, the anti-RBD antibodies correlated with viral neutralizing titers to a greater extent than the other antibody assays. Discussion Our observations support the use of an anti-RBD assay such as the Lumit Dx assay, as an optimal predictor of the neutralization capability of CCP.


Author(s):  
Qiang Zhang ◽  
Huajun Zhang ◽  
Kun Huang ◽  
Yong Yang ◽  
Xianfeng Hui ◽  
...  

SummaryCoronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, and rapidly spread worldwide. Previous studies suggested cat could be a potential susceptible animal of SARS-CoV-2. Here, we investigated the infection of SARS-CoV-2 in cats by detecting specific serum antibodies. A cohort of serum samples were collected from cats in Wuhan, including 102 sampled after COVID-19 outbreak, and 39 prior to the outbreak. 15 of 102 (14.7%) cat sera collected after the outbreak were positive for the receptor binding domain (RBD) of SARS-CoV-2 by indirect enzyme linked immunosorbent assay (ELISA). Among the positive samples, 11 had SARS-CoV-2 neutralizing antibodies with a titer ranging from 1/20 to 1/1080. No serological cross-reactivity was detected between the SARS-CoV-2 and type I or II feline infectious peritonitis virus (FIPV). Our data demonstrates that SARS-CoV-2 has infected cat population in Wuhan during the outbreak.


Author(s):  
Bipin Singh

: The recent outbreak of novel coronavirus (SARS-CoV-2 or 2019-nCoV) and its worldwide spread is posing one of the major threats to human health and the world economy. It has been suggested that SARS-CoV-2 is similar to SARSCoV based on the comparison of the genome sequence. Despite the genomic similarity between SARS-CoV-2 and SARSCoV, the spike glycoprotein and receptor binding domain in SARS-CoV-2 shows the considerable difference compared to SARS-CoV, due to the presence of several point mutations. The analysis of receptor binding domain (RBD) from recently published 3D structures of spike glycoprotein of SARS-CoV-2 (Yan, R., et al. (2020); Wrapp, D., et al. (2020); Walls, A. C., et al. (2020)) highlights the contribution of a few key point mutations in RBD of spike glycoprotein and molecular basis of its efficient binding with human angiotensin-converting enzyme 2 (ACE2).


Sign in / Sign up

Export Citation Format

Share Document