scholarly journals Multiscale cardiac imaging to capture the whole heart and its internal cellular architecture, with applications to congenital heart disease

2020 ◽  
Author(s):  
Graham Rykiel ◽  
Claudia S. López ◽  
Jessica L. Riesterer ◽  
Ian Fries ◽  
Sanika Deosthali ◽  
...  

AbstractEfficient cardiac pumping depends on the morphological structure of the heart, but also on its sub-cellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized sub-cellular disruptions in architecture that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three dimensional (3D) heart structure, assessing malformations; and its ultrastructure, assessing disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). This combination of technologies has not been possible before in imaging the same cardiac sample due to the heart large size, even when studying small fetal and neonatal animal models (~5×5×5mm3). Here, we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation (at the nm resolution range). Our approach enables multiscale studies of cardiac architecture in models of congenital heart disease and beyond.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Graham Rykiel ◽  
Claudia S López ◽  
Jessica L Riesterer ◽  
Ian Fries ◽  
Sanika Deosthali ◽  
...  

Cardiac pumping depends on the morphological structure of the heart, but also on its subcellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized ultrastructural disruptions that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three-dimensional (3D) heart structure, to assess malformations; and its ultrastructure, to assess organelle disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). In a small animal model (chicken embryo), we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation on the same sample, enabling correlative multiscale imaging. Our approach enables multiscale studies in models of congenital heart disease and beyond.


2019 ◽  
Vol 10 (5) ◽  
pp. 533-538 ◽  
Author(s):  
Frank Han ◽  
Jennifer Co-Vu ◽  
Dalia Lopez-Colon ◽  
John Forder ◽  
Mark Bleiweis ◽  
...  

Planning corrective and palliative surgery for patients who have complex congenital heart disease often relies on the assessment of cardiac anatomy using two-dimensional noninvasive cardiac imaging modalities (echocardiography, cardiac magnetic resonance imaging, and computed tomography scan). Advances in cardiac noninvasive imaging now include the use of three-dimensional (3D) reconstruction tools that produce 3D images and 3D printouts. There is scant evidence available in the literature as to what effect the availability of 3D printouts of complex congenital heart defects has on surgical outcomes. Surgical outcomes of study subjects with a 3D cardiac printout available and their paired control subject without a 3D cardiac printout available were compared. We found a trend toward shorter surgical times in the study group who had the benefit of 3D models, but no statistical significance was found for bypass time, cross-clamp time, total time, length of stay, or respiratory support. These preliminary results support the proposal that 3D modeling be made readily available to congenital cardiac surgery teams, for use in patients with the most complex congenital heart disease.


1999 ◽  
Vol 9 (6) ◽  
pp. 577-584 ◽  
Author(s):  
A. Heusch ◽  
J. Rübo ◽  
O. N. Krogmann ◽  
M. Bourgeois

AbstractBackgroundThree-dimensional echocardiography is a non-invasive imaging technique. The fact that it permits volumetric analyses independently of geometrical assumptions makes it a putatively useful method for the precise measurement of the volumes of the irregularly shaped right ventricles in children. The aim of this study was to assess the feasibility of this method and its agreement with angiocardiography based estimates of right ventricular volume in children with congenital heart disease.MethodsWe studied 102 children with congenital heart disease. The angiocardiographic right ventricular volumetry was performed using a biplanar technique using Simpson's rule and corrected with Lange's correction factors. The echo data sets were registered trans-thoracically with a rotating transmitter. Volumes were calculated after manual planimetry by adding the volumes of the individual slices.ResultsCalculation of right ventricular volume echocardiographically was possible only in 34% of patients, mostly infants and toddlers. In comparison to angiocardiography, the measured volumes were 1.1 ±6.9 ml (19.5 ±34.1%) or 6.3±9.4ml (42.5±33.6%) smaller during systole or diastole, respectively. The limits of agreement were −12.5 and 13.6ml, or 12.45 and 25.15ml during systole or diastole, respectively. When plotted to a logarithmical scale, the correlation coefficients r2 were 0.70 for systolic and 0.79 for diastolic measurements.ConclusionTransthoracic 3-dimensional echocardiography with a rotating transmitter is feasible for volumetry only in small children. The volumes measured were significantly smaller than the ones calculated from the angiocardiographic images. The correlation between the two methods is moderate.


Radiology ◽  
2012 ◽  
Vol 263 (2) ◽  
pp. 547-554 ◽  
Author(s):  
Tarique Hussain ◽  
Dirk Lossnitzer ◽  
Hannah Bellsham-Revell ◽  
Israel Valverde ◽  
Philipp Beerbaum ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 562
Author(s):  
Olga María Diz ◽  
Rocio Toro ◽  
Sergi Cesar ◽  
Olga Gomez ◽  
Georgia Sarquella-Brugada ◽  
...  

Congenital heart disease is a group of pathologies characterized by structural malformations of the heart or great vessels. These alterations occur during the embryonic period and are the most frequently observed severe congenital malformations, the main cause of neonatal mortality due to malformation, and the second most frequent congenital malformations overall after malformations of the central nervous system. The severity of different types of congenital heart disease varies depending on the combination of associated anatomical defects. The causes of these malformations are usually considered multifactorial, but genetic variants play a key role. Currently, use of high-throughput genetic technologies allows identification of pathogenic aneuploidies, deletions/duplications of large segments, as well as rare single nucleotide variants. The high incidence of congenital heart disease as well as the associated complications makes it necessary to establish a diagnosis as early as possible to adopt the most appropriate measures in a personalized approach. In this review, we provide an exhaustive update of the genetic bases of the most frequent congenital heart diseases as well as other syndromes associated with congenital heart defects, and how genetic data can be translated to clinical practice in a personalized approach.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Dennis R. Delany ◽  
Stephanie S. Gaydos ◽  
Deborah A. Romeo ◽  
Heather T. Henderson ◽  
Kristi L. Fogg ◽  
...  

AbstractApproximately 50% of newborns with Down syndrome have congenital heart disease. Non-cardiac comorbidities may also be present. Many of the principles and strategies of perioperative evaluation and management for patients with congenital heart disease apply to those with Down syndrome. Nevertheless, careful planning for cardiac surgery is required, evaluating for both cardiac and noncardiac disease, with careful consideration of the risk for pulmonary hypertension. In this manuscript, for children with Down syndrome and hemodynamically significant congenital heart disease, we will summarize the epidemiology of heart defects that warrant intervention. We will review perioperative planning for this unique population, including anesthetic considerations, common postoperative issues, nutritional strategies, and discharge planning. Special considerations for single ventricle palliation and heart transplantation evaluation will also be discussed. Overall, the risk of mortality with cardiac surgery in pediatric patients with Down syndrome is no more than the general population, except for those with functional single ventricle heart defects. Underlying comorbidities may contribute to postoperative complications and increased length of stay. A strong understanding of cardiac and non-cardiac considerations in children with Down syndrome will help clinicians optimize perioperative care and long-term outcomes.


Sign in / Sign up

Export Citation Format

Share Document