scholarly journals Genome-wide mutagenesis identifies factors involved in Enterococcus faecalis vaginal adherence and persistence

2020 ◽  
Author(s):  
Norhan Alhajjar ◽  
Anushila Chatterjee ◽  
Brady L. Spencer ◽  
Lindsey R. Burcham ◽  
Julia L. E. Willett ◽  
...  

ABSTRACTEnterococcus faecalis is a Gram-positive commensal bacterium native to the gastrointestinal tract and an opportunistic pathogen of increasing clinical concern. E. faecalis also colonizes the female reproductive tract and reports suggest vaginal colonization increases following antibiotic treatment or in patients with aerobic vaginitis. Currently, little is known about specific factors that promote E. faecalis vaginal colonization and subsequent infection. We modified an established mouse vaginal colonization model to explore E. faecalis vaginal carriage and demonstrate that both vancomycin resistant and sensitive strains colonize the murine vaginal tract. Following vaginal colonization, we observed E. faecalis in vaginal, cervical and uterine tissue. A mutant lacking endocarditis- and biofilm-associated pili (Ebp) exhibited a decreased ability to associate with human vaginal and cervical cells in vitro, but did not contribute to colonization in vivo. Thus, we screened a low-complexity transposon (Tn) mutant library to identify novel genes important for E. faecalis colonization and persistence in the vaginal tract. This screen revealed 383 mutants that were underrepresented during vaginal colonization at 1, 5 and 8 days post-inoculation compared to growth in culture medium. We confirmed that mutants deficient in ethanolamine catabolism or in the type VII secretion system were attenuated in persisting during vaginal colonization. These results reveal the complex nature of vaginal colonization and suggest that multiple factors contribute to E. faecalis persistence in the reproductive tract.IMPORTANCEDespite increasing prevalence and association of E. faecalis with aerobic vaginitis, essentially nothing is known about the bacterial factors that influence E. faecalis vaginal colonization. We have adapted an animal model of vaginal colonization that supports colonization of multiple E. faecalis strains. Additionally, we determined that ethanolamine utilization and type VII secretion system genes contribute to vaginal colonization and persistence. Identification of factors important for vaginal colonization and persistence provides potential targets for the development of therapeutics. This study is the first to identify key determinants that promote vaginal colonization by E. faecalis, which may represent an important reservoir for antibiotic resistant enterococci.

2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Norhan Alhajjar ◽  
Anushila Chatterjee ◽  
Brady L. Spencer ◽  
Lindsey R. Burcham ◽  
Julia L. E. Willett ◽  
...  

ABSTRACT Enterococcus faecalis is a Gram-positive commensal bacterium native to the gastrointestinal tract and an opportunistic pathogen of increasing clinical concern. E. faecalis also colonizes the female reproductive tract, and reports suggest vaginal colonization increases following antibiotic treatment or in patients with aerobic vaginitis. Currently, little is known about specific factors that promote E. faecalis vaginal colonization and subsequent infection. We modified an established mouse vaginal colonization model to explore E. faecalis vaginal carriage and demonstrate that both vancomycin-resistant and -sensitive strains colonize the murine vaginal tract. Following vaginal colonization, we observed E. faecalis in vaginal, cervical, and uterine tissue. A mutant lacking endocarditis- and biofilm-associated pili (Ebp) exhibited a decreased ability to associate with human vaginal and cervical cells in vitro but did not contribute to colonization in vivo. Thus, we screened a low-complexity transposon (Tn) mutant library to identify novel genes important for E. faecalis colonization and persistence in the vaginal tract. This screen revealed 383 mutants that were underrepresented during vaginal colonization at 1, 5, and 8 days postinoculation compared to growth in culture medium. We confirmed that mutants deficient in ethanolamine catabolism or in the type VII secretion system were attenuated in persisting during vaginal colonization. These results reveal the complex nature of vaginal colonization and suggest that multiple factors contribute to E. faecalis persistence in the reproductive tract.


2019 ◽  
Author(s):  
Liwen Deng ◽  
Katrin Schilcher ◽  
Lindsey R. Burcham ◽  
Jakub M. Kwiecinski ◽  
Paige M. Johsnon ◽  
...  

ABSTRACTStaphylococcus aureus is an important pathogen responsible for nosocomial and community acquired infections in humans, and methicillin-resistant S. aureus (MRSA) infections have continued to increase despite wide-spread preventative measures. S. aureus can colonize the female vaginal tract and reports have suggested an increase in MRSA infections in pregnant and postpartum women as well as outbreaks in newborn nurseries. Currently, little is known about specific factors that promote MRSA vaginal colonization and subsequent infection. To study S. aureus colonization of the female reproductive tract in a mammalian system, we developed a mouse model of S. aureus vaginal carriage and demonstrated that both hospital-associated and community-associated MRSA isolates can colonize the murine vaginal tract. Immunohistochemical analysis revealed an increase in neutrophils in the vaginal lumen during MRSA colonization. Additionally, we observed that a mutant lacking fibrinogen binding adhesins exhibited decreased persistence within the mouse vagina. To further identify novel factors that promote vaginal colonization, we performed RNA-sequencing to determine the transcriptome of MRSA growing in vivo during vaginal carriage at 5 hours, 1-day, and 3-days post-inoculation. Over 25% of bacterial genes were differentially regulated at all time points during colonization compared to laboratory cultures. The most highly induced genes were those involved in iron acquisition, including the Isd system and siderophore transport systems. Mutants deficient in these pathways did not persist as well during in vivo colonization. These results reveal that fibrinogen binding as well as the capacity to overcome host nutritional limitation are important determinants of MRSA vaginal colonization.IMPORTANCEStaphylococcus aureus is an opportunistic pathogen able to cause a wide variety of infections in humans. Recent reports have suggested an increasing prevalence of MRSA in pregnant and postpartum women, coinciding with the increased incidence of MRSA infections in the NICU and newborn nurseries. Vertical transmission from mothers to infants at delivery is a likely route of MRSA acquisition by the newborn, however, essentially nothing is known about host and bacterial factors that influence MRSA carriage in the vagina. Here, we established a mouse model of vaginal colonization and observed that multiple MRSA strains can persist in the vaginal tract. Additionally, we determined that MRSA interactions with fibrinogen as well as iron uptake can promote vaginal persistence. This study is the first to identify molecular mechanisms which govern vaginal colonization by MRSA, the critical initial step preceding infection and neonatal transmission.


Structure ◽  
2015 ◽  
Vol 23 (3) ◽  
pp. 571-583 ◽  
Author(s):  
Matthew Solomonson ◽  
Dheva Setiaputra ◽  
Karl A.T. Makepeace ◽  
Emilie Lameignere ◽  
Evgeniy V. Petrotchenko ◽  
...  

2020 ◽  
Vol 432 (4) ◽  
pp. 1265-1278 ◽  
Author(s):  
Vincent J.C. van Winden ◽  
Catalin M. Bunduc ◽  
Roy Ummels ◽  
Wilbert Bitter ◽  
Edith N.G. Houben

BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Ben Warne ◽  
Catriona P. Harkins ◽  
Simon R. Harris ◽  
Alexandra Vatsiou ◽  
Nicola Stanley-Wall ◽  
...  

2015 ◽  
Vol 83 (11) ◽  
pp. 4349-4361 ◽  
Author(s):  
Swati Shah ◽  
Joe R. Cannon ◽  
Catherine Fenselau ◽  
Volker Briken

ABSTRACTThe ESX-5 secretion system ofMycobacterium tuberculosisis important for bacterial virulence and for the secretion of the large PE/PPE protein family, whose genes constitute 10% of theM. tuberculosisgenome. A four-gene region of the ESX-5 system is duplicated three times in theM. tuberculosisgenome, but the functions of these duplicates are unknown. Here we investigated one of these duplicates: the region carrying theesxI,esxJ,ppe15, andpe8genes (ESX-5a). An ESX-5a deletion mutant in the model systemM. marinumbackground was deficient in the secretion of some members of the PE/PPE family of proteins. Surprisingly, we also identified other proteins that are not members of this family, thus expanding the range of ESX-5 secretion substrates. In addition, we demonstrated that ESX-5a is important for the virulence ofM. marinumin the zebrafish model. Furthermore, we showed the role of theM. tuberculosisESX-5a region in inflammasome activation but not host cell death induction, which is different from the case for theM. tuberculosisESX-5 system. In conclusion, the ESX-5a region is nonredundant with its ESX-5 paralog and is necessary for secretion of a specific subset of proteins inM. tuberculosisandM. marinumthat are important for bacterial virulence ofM. marinum. Our findings point to a role for the three ESX-5 duplicate regions in the selection of substrates for secretion via ESX-5, and hence, they provide the basis for a refined model of the molecular mechanism of this type VII secretion system.


iScience ◽  
2021 ◽  
pp. 103585
Author(s):  
Yuchen Wang ◽  
Yuting Tang ◽  
Chen Lin ◽  
Junli Zhang ◽  
Juntao Mai ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
pp. e1009182
Author(s):  
John Culver Taylor ◽  
Xinsheng Gao ◽  
Juan Xu ◽  
Michael Holder ◽  
Joseph Petrosino ◽  
...  

Streptococcus gallolyticus subspecies gallolyticus (Sgg) has a strong clinical association with colorectal cancer (CRC) and actively promotes the development of colon tumors. However, the molecular determinants involved in Sgg pathogenicity in the gut are unknown. Bacterial type VII secretion systems (T7SS) mediate pathogen interactions with their host and are important for virulence in pathogenic mycobacteria and Staphylococcus aureus. Through genome analysis, we identified a locus in Sgg strain TX20005 that encodes a putative type VII secretion system (designated as SggT7SST05). We showed that core genes within the SggT7SST05 locus are expressed in vitro and in the colon of mice. Western blot analysis showed that SggEsxA, a protein predicted to be a T7SS secretion substrate, is detected in the bacterial culture supernatant, indicating that this SggT7SST05 is functional. Deletion of SggT7SST05 (TX20005Δesx) resulted in impaired bacterial adherence to HT29 cells and abolished the ability of Sgg to stimulate HT29 cell proliferation. Analysis of bacterial culture supernatants suggest that SggT7SST05-secreted factors are responsible for the pro-proliferative activity of Sgg, whereas Sgg adherence to host cells requires both SggT7SST05-secreted and bacterial surface-associated factors. In a murine gut colonization model, TX20005Δesx showed significantly reduced colonization compared to the parent strain. Furthermore, in a mouse model of CRC, mice exposed to TX20005 had a significantly higher tumor burden compared to saline-treated mice, whereas those exposed to TX20005Δesx did not. Examination of the Sgg load in the colon in the CRC model suggests that SggT7SST05-mediated activities are directly involved in the promotion of colon tumors. Taken together, these results reveal SggT7SST05 as a previously unrecognized pathogenicity determinant for Sgg colonization of the colon and promotion of colon tumors.


Sign in / Sign up

Export Citation Format

Share Document