scholarly journals Preterm birth impedes structural and functional development of cerebellar Purkinje cells in the developing baboon cerebellum

2020 ◽  
Author(s):  
Tara Barron ◽  
Jun Hee Kim

AbstractHuman cerebellar development occurs late in gestation and is hindered by preterm birth. The fetal development of Purkinje cells, the primary output cells of the cerebellar cortex, is crucial for the structure and function of the cerebellum. However, morphological and electrophysiological features in Purkinje cells at different gestational ages, and the effects of neonatal intensive care unit (NICU) experience on cerebellar development are unexplored. Utilizing non-human primate baboon cerebellum, we investigated Purkinje cell development during the last trimester of pregnancy and the effect of NICU experience following premature birth on developmental features of Purkinje cells. Immunostaining and whole-cell patch clamp recordings of Purkinje cells in the baboon cerebellum at different gestational ages revealed that molecular layer width, driven by Purkinje dendrite extension, drastically increased and refinement of action potential waveform properties occurred throughout the last trimester of pregnancy. Preterm birth followed by NICU experience for 2 weeks impeded development of Purkinje cells, including action potential waveform properties, synaptic input, and dendrite extension compared with age-matched controls. In addition, these alterations impact Purkinje cell output, reducing the spontaneous firing frequency in deep cerebellar nucleus (DCN) neurons. Taken together, primate cerebellum undergoes developmental refinements during late gestation, and NICU experience following preterm birth alters morphological and physiological features in the cerebellum that can lead to functional deficits.Summary StatementBaboon cerebellum undergoes developmental refinements during late gestation, and NICU experience following preterm birth impacts cellular development in the cerebellum that can lead to functional deficits.

2020 ◽  
Vol 10 (12) ◽  
pp. 897
Author(s):  
Tara Barron ◽  
Jun Hee Kim

Human cerebellar development occurs late in gestation and is hindered by preterm birth. The fetal development of Purkinje cells, the primary output cells of the cerebellar cortex, is crucial for the structure and function of the cerebellum. However, morphological and electrophysiological features in Purkinje cells at different gestational ages, and the effects of neonatal intensive care unit (NICU) experience on cerebellar development are unexplored. Utilizing the non-human primate baboon cerebellum, we investigated Purkinje cell development during the last trimester of pregnancy and the effect of NICU experience following premature birth on developmental features of Purkinje cells. Immunostaining and whole-cell patch clamp recordings of Purkinje cells in the baboon cerebellum at different gestational ages revealed that molecular layer width, driven by Purkinje dendrite extension, drastically increased and refinement of action potential waveform properties occurred throughout the last trimester of pregnancy. Preterm birth followed by NICU experience for 2 weeks impeded development of Purkinje cells, including action potential waveform properties, synaptic input, and dendrite extension compared with age-matched controls. In addition, these alterations impact Purkinje cell output, reducing the spontaneous firing frequency in deep cerebellar nucleus (DCN) neurons. Taken together, the primate cerebellum undergoes developmental refinements during late gestation, and NICU experience following extreme preterm birth influences morphological and physiological features in the cerebellum that can lead to functional deficits.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e38482 ◽  
Author(s):  
Peter Stratton ◽  
Allen Cheung ◽  
Janet Wiles ◽  
Eugene Kiyatkin ◽  
Pankaj Sah ◽  
...  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Michael A Gaviño ◽  
Kevin J Ford ◽  
Santiago Archila ◽  
Graeme W Davis

Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release.


2022 ◽  
pp. 105609
Author(s):  
Rémi Bos ◽  
Khalil Rihan ◽  
Patrice Quintana ◽  
Lara El-Bazzal ◽  
Nathalie Bernard-Marissal ◽  
...  

2002 ◽  
Vol 283 (2) ◽  
pp. H615-H630 ◽  
Author(s):  
H. Dobrzynski ◽  
N. C. Janvier ◽  
R. Leach ◽  
J. B. C. Findlay ◽  
M. R. Boyett

The inotropic effects of ACh and adenosine on ferret ventricular cells were investigated with the action potential-clamp technique. Under current clamp, both agonists resulted in action potential shortening and a decrease in contraction. Under action potential clamp, both agonists failed to decrease contraction substantially. In the absence of agonist, application of the short action potential waveform (recorded previously in the presence of agonist) also resulted in a decrease in contraction. Under action potential clamp, application of ACh resulted in a Ba2+-sensitive outward current with the characteristics of muscarinic K+ current ( I K,ACh); the presence of the muscarinic K+ channel was confirmed by PCR and immunocytochemistry. In the absence of agonist, on application of the short ACh action potential waveform, the decrease in contraction was accompanied by loss of the inward Na+/Ca2+exchange current ( I NaCa). ACh also inhibited the background inward K+ current ( I K,1). It is concluded that ACh activates I K,ACh, inhibits I K,1, and indirectly inhibits I NaCa; this results in action potential shortening, decrease in contraction, and, as a result of the inhibition of I K,1, minimum decrease in excitability.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
M. Pásek ◽  
J. Šimurda ◽  
G. Christé

The ratio of densities of Na-Ca exchanger current (INaCa) in the t-tubular and surface membranes (INaCa-ratio) computed from the values ofINaCaand membrane capacitances (Cm) measured in adult rat ventricular cardiomyocytes before and after detubulation ranges between 1.7 and 25 (potentially even 40). Variations of action potential waveform and of calcium turnover within this span of theINaCa-ratio were simulated employing previously developed model of rat ventricular cell incorporating separate description of ion transport systems in the t-tubular and surface membranes. The increase ofINaCa-ratio from 1.7 to 25 caused a prolongation of APD (duration of action potential at 90% repolarisation) by 12, 9, and 6% and an increase of peak intracellular Ca2+transient by 45, 19, and 6% at 0.1, 1, and 5 Hz, respectively. The prolonged APD resulted from the increase ofINaCadue to the exposure of a larger fraction of Na-Ca exchangers to higher Ca2+transients under the t-tubular membrane. The accompanying rise of Ca2+transient was a consequence of a higher Ca2+load in sarcoplasmic reticulum induced by the increased Ca2+cycling between the surface and t-tubular membranes. However, the reason for large differences in theINaCa-ratio assessed from measurements in adult rat cardiomyocytes remains to be explained.


2018 ◽  
Vol 119 (4) ◽  
pp. 1506-1520 ◽  
Author(s):  
David B. Jaffe ◽  
Robert Brenner

The gain of a neuron, the number and frequency of action potentials triggered in response to a given amount of depolarizing injection, is an important behavior underlying a neuron’s function. Variations in action potential waveform can influence neuronal discharges by the differential activation of voltage- and ion-gated channels long after the end of a spike. One component of the action potential waveform, the afterhyperpolarization (AHP), is generally considered an inhibitory mechanism for limiting firing rates. In dentate gyrus granule cells (DGCs) expressing fast-gated BK channels, large fast AHPs (fAHP) are paradoxically associated with increased gain. In this article, we describe a mechanism for this behavior using a computational model. Hyperpolarization provided by the fAHP enhances activation of a dendritic inward current (a T-type Ca2+ channel is suggested) that, in turn, boosts rebound depolarization at the soma. The model suggests that the fAHP may both reduce Ca2+ channel inactivation and, counterintuitively, enhance its activation. The magnitude of the rebound depolarization, in turn, determines the activation of a subsequent, slower inward current (a persistent Na+ current is suggested) limiting the interspike interval. Simulations also show that the effect of AHP on gain is also effective for physiologically relevant stimulation; varying AHP amplitude affects interspike interval across a range of “noisy” stimulus frequency and amplitudes. The mechanism proposed suggests that small fAHPs in DGCs may contribute to their limited excitability. NEW & NOTEWORTHY The afterhyperpolarization (AHP) is canonically viewed as a major factor underlying the refractory period, serving to limit neuronal firing rate. We recently reported that enhancing the amplitude of the fast AHP (fAHP) in a relatively slowly firing neuron (vs. fast spiking neurons) expressing fast-gated BK channels augments neuronal excitability. In this computational study, we present a novel, quantitative hypothesis for how varying the amplitude of the fAHP can, paradoxically, influence a subsequent spike tens of milliseconds later.


2017 ◽  
Vol 39 (6) ◽  
pp. 487-497 ◽  
Author(s):  
Kristbjörg Sveinsdóttir ◽  
John-Kalle Länsberg ◽  
Snjólaug Sveinsdóttir ◽  
Martin Garwicz ◽  
Lennart Ohlsson ◽  
...  

Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p < 0.05) than in the T group. Postnatal weight development correlated with circulating IGF-1 (r2 = 0.89) independently of gestational age at birth and postnatal age. The proliferative (Ki-67-positive) portion of the external granular layer (EGL) was decreased in the PT group at postnatal day 2 (P2) compared to in the T group (p = 0.01). Purkinje cells exhibited decreased calbindin staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population.


Sign in / Sign up

Export Citation Format

Share Document