axonal initial segment
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
pp. 105609
Author(s):  
Rémi Bos ◽  
Khalil Rihan ◽  
Patrice Quintana ◽  
Lara El-Bazzal ◽  
Nathalie Bernard-Marissal ◽  
...  

2021 ◽  
Author(s):  
Remi Bos ◽  
Khalil Rihan ◽  
Lara El-Bazzal ◽  
Nathalie Bernard-Marissal ◽  
Patrice Quintana ◽  
...  

We recently described new pathogenic variants in VRK1, in patients affected with distal Hereditary Motor Neuropathy associated with upper motor neurons signs. Specifically, we provided evidences that hiPSC-derived Motor Neurons (hiPSC-MN) from these patients display Cajal bodies (CBs) disassembly and defects in neurite outgrowth and branching. We here focused on the Axonal Initial Segment (AIS) and the related firing properties of hiPSC-MNs from these patients. We found that the patients Action Potential (AP) was smaller in amplitude, larger in duration, and displayed a more depolarized threshold while the firing patterns were not altered. These alterations were accompanied by a decrease in the AIS length measured in patients hiPSC-MNs. These data indicate that mutations in VRK1 impact the AP waveform and the AIS organization in MNs and may ultimately lead to the related motor neuron disease.


2020 ◽  
Vol 40 (42) ◽  
pp. 7999-8024 ◽  
Author(s):  
Thomas A. Ravenscroft ◽  
Jasper Janssens ◽  
Pei-Tseng Lee ◽  
Burak Tepe ◽  
Paul C. Marcogliese ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Naomi AK Hanemaaijer ◽  
Marko A Popovic ◽  
Xante Wilders ◽  
Sara Grasman ◽  
Oriol Pavón Arocas ◽  
...  

Calcium ions (Ca2+) are essential for many cellular signaling mechanisms and enter the cytosol mostly through voltage-gated calcium channels. Here, using high-speed Ca2+ imaging up to 20 kHz in the rat layer five pyramidal neuron axon we found that activity-dependent intracellular calcium concentration ([Ca2+]i) in the axonal initial segment was only partially dependent on voltage-gated calcium channels. Instead, [Ca2+]i changes were sensitive to the specific voltage-gated sodium (NaV) channel blocker tetrodotoxin. Consistent with the conjecture that Ca2+ enters through the NaV channel pore, the optically resolved ICa in the axon initial segment overlapped with the activation kinetics of NaV channels and heterologous expression of NaV1.2 in HEK-293 cells revealed a tetrodotoxin-sensitive [Ca2+]i rise. Finally, computational simulations predicted that axonal [Ca2+]i transients reflect a 0.4% Ca2+ conductivity of NaV channels. The findings indicate that Ca2+ permeation through NaV channels provides a submillisecond rapid entry route in NaV-enriched domains of mammalian axons.


2020 ◽  
Author(s):  
Stefano Masoli ◽  
Alessandra Ottaviani ◽  
Egidio D’Angelo

AbstractThe Golgi cells are the main inhibitory interneurons of the cerebellar granular layer. Although recent works have highlighted the complexity of their dendritic organization and synaptic inputs, the mechanisms through which these neurons integrate complex input patterns remained unknown. Here we have used 8 detailed morphological reconstructions to develop multicompartmental models of Golgi cells, in which Na, Ca, and K channels were distributed along dendrites, soma, axonal initial segment and axon. The models faithfully reproduced a rich pattern of electrophysiological and pharmacological properties and predicted the operating mechanisms of these neurons. Basal dendrites turned out to be more tightly electrically coupled to the axon initial segment than apical dendrites. During synaptic transmission, parallel fibers caused slow Ca-dependent depolarizations in apical dendrites that boosted the axon initial segment encoder and Na-spike backpropagation into basal dendrites, while inhibitory synapses effectively shunted backpropagating currents. This oriented dendritic processing set up a coincidence detector controlling voltage-dependent NMDA receptor unblock in basal dendrites, which, by regulating local calcium influx, may provide the basis for spike-timing dependent plasticity anticipated by theory.Author SummaryThe Golgi cells are the main inhibitory interneurons of the cerebellum granular layer and play a fundamental role in controlling cerebellar processing. However, it was unclear how spikes are processed in the dendrites by specific sets of ionic channels and how they might contribute to integrate synaptic inputs and plasticity. Here we have developed detailed multicompartmental models of Golgi cells that faithfully reproduced a large set of experimental findings and revealed the nature of signal interchange between dendrites and axo-somatic compartments. A main prediction of the models is that synaptic activation of apical dendrites can effectively trigger spike generation in the axonal initial segment followed by rapid spike backpropagation into basal dendrites. Here, incoming mossy fiber inputs and backpropagating spikes regulate the voltage-dependent unblock of NMDA channels and the induction of spike timing-dependent plasticity (STDP). STDP, which was predicted by theory, may therefore be controlled by contextual information provided by parallel fibers and integrated in apical dendrites, supporting the view that spike timing is fundamental to control synaptic plasticity at the cerebellar input stage.


2018 ◽  
Vol 29 (10) ◽  
pp. 4334-4346 ◽  
Author(s):  
Jian-Ming Yang ◽  
Chen-Jie Shen ◽  
Xiao-Juan Chen ◽  
Ying Kong ◽  
Yi-Si Liu ◽  
...  

Abstract erbb4 is a known susceptibility gene for schizophrenia. Chandelier cells (ChCs, also known as axo-axonic cells) are a distinct GABAergic interneuron subtype that exclusively target the axonal initial segment, which is the site of pyramidal neuron action potential initiation. ChCs are a source of ErbB4 expression and alterations in ChC-pyramidal neuron connectivity occur in the medial prefrontal cortex (mPFC) of schizophrenic patients and animal models of schizophrenia. However, the contribution of ErbB4 in mPFC ChCs to the pathogenesis of schizophrenia remains unknown. By conditional deletion or knockdown of ErbB4 from mPFC ChCs, we demonstrated that ErbB4 deficits led to impaired ChC-pyramidal neuron connections and cognitive dysfunctions. Furthermore, the cognitive dysfunctions were normalized by L-838417, an agonist of GABAAα2 receptors enriched in the axonal initial segment. Given that cognitive dysfunctions are a core symptom of schizophrenia, our results may provide a new perspective for understanding the etiology of schizophrenia and suggest that GABAAα2 receptors may be potential pharmacological targets for its treatment.


2017 ◽  
Vol 114 (29) ◽  
pp. 7719-7724 ◽  
Author(s):  
Michael Seagar ◽  
Michael Russier ◽  
Olivier Caillard ◽  
Yves Maulet ◽  
Laure Fronzaroli-Molinieres ◽  
...  

Autosomal dominant epilepsy with auditory features results from mutations in leucine-rich glioma-inactivated 1 (LGI1), a soluble glycoprotein secreted by neurons. Animal models of LGI1 depletion display spontaneous seizures, however, the function of LGI1 and the mechanisms by which deficiency leads to epilepsy are unknown. We investigated the effects of pure recombinant LGI1 and genetic depletion on intrinsic excitability, in the absence of synaptic input, in hippocampal CA3 neurons, a classical focus for epileptogenesis. Our data indicate that LGI1 is expressed at the axonal initial segment and regulates action potential firing by setting the density of the axonal Kv1.1 channels that underlie dendrotoxin-sensitive D-type potassium current. LGI1 deficiency incurs a >50% down-regulation of the expression of Kv1.1 and Kv1.2 via a posttranscriptional mechanism, resulting in a reduction in the capacity of axonal D-type current to limit glutamate release, thus contributing to epileptogenesis.


2016 ◽  
Vol 116 (5) ◽  
pp. 2114-2124 ◽  
Author(s):  
Joseph Lombardo ◽  
Melissa A. Harrington

KCNQ/Kv7 channels form a slow noninactivating K+ current, also known as the M current. They activate in the subthreshold range of membrane potentials and regulate different aspects of excitability in neurons of the central nervous system. In spinal motoneurons (MNs), KCNQ/Kv7 channels have been identified in the somata, axonal initial segment, and nodes of Ranvier, where they generate a slow, noninactivating, K+ current sensitive to both muscarinic receptor-mediated inhibition and KCNQ/Kv7 channel blockers. In this study, we thoroughly reevaluated the function of up- and downregulation of KCNQ/Kv7 channels in mouse immature spinal MNs. Using electrophysiological techniques together with specific pharmacological modulators of the activity of KCNQ/Kv7 channels, we show that enhancement of the activity of these channels decreases the excitability of spinal MNs in mouse neonates. This action on MNs results from a combination of hyperpolarization of the resting membrane potential, a decrease in the input resistance, and depolarization of the voltage threshold. On the other hand, the effect of inhibition of KCNQ/Kv7 channels suggested that these channels play a limited role in regulating basal excitability. Computer simulations confirmed that pharmacological enhancement of KCNQ/Kv7 channel activity decreases excitability and also suggested that the effects of inhibition of KCNQ/Kv7 channels on the excitability of spinal MNs do not depend on a direct effect in these neurons but likely on spinal cord synaptic partners. These results indicate that KCNQ/Kv7 channels have a fundamental role in the modulation of the excitability of spinal MNs acting both in these neurons and in their local presynaptic partners.


2016 ◽  
Author(s):  
Maria Telenczuk ◽  
Bertrand Fontaine ◽  
Romain Brette

AbstractIn most vertebrate neurons, spikes initiate in the axonal initial segment (AIS). When recorded in the soma, they have a surprisingly sharp onset, as if sodium (Na) channels opened abruptly. The main view stipulates that spikes initiate in a conventional manner at the distal end of the AIS, then progressively sharpen as they backpropagate to the soma. We examined the biophysical models used to substantiate this view, and we found that orthodromic spikes do no initiate through a local axonal current loop that propagates along the axon, but through a global current loop encompassing the AIS and soma, which forms an electrical dipole. Therefore, the phenomenon is not adequately modeled as the backpropagation of an electrical wave along the axon, since the wavelength would be as large as the entire system. Instead, in these models, we found that spike initiation rather follows the critical resistive coupling model proposed recently, where the Na current entering the AIS is matched by the axial resistive current flowing to the soma. Besides demonstrating it by examining the balance of currents at spike initiation, we show that the observed increase in spike sharpness along the axon is artifactual and disappears when an appropriate measure of rapidness is used; instead, somatic onset rapidness can be predicted from spike shape at initiation site. Finally, we reproduce the phenomenon in a two-compartment model, showing that it does not rely on propagation. In these models, the sharp onset of somatic spikes is therefore not an artifact of observing spikes at the incorrect location, but rather the signature that spikes are initiated through a global soma-AIS current loop forming an electrical dipole.Author summaryIn most vertebrate neurons, spikes are initiated in the axonal initial segment, next to the soma. When recorded at the soma, action potentials appear to suddenly rise as if all sodium channels opened at once. This has been previously attributed to the backpropagation of spikes from the initial segment to the soma. Here we demonstrate with biophysical models that backpropagation does not contribute to the sharpness of spike onset. Instead, we show that the phenomenon is due to the resistive coupling between the large somatodendritic compartment and the small axonal compartment, a geometrical discontinuity that leads to an abrupt variation in voltage.


Sign in / Sign up

Export Citation Format

Share Document