scholarly journals Development of a COVID-19 vaccine based on the receptor binding domain displayed on virus-like particles

Author(s):  
Lisha Zha ◽  
Hongxin Zhao ◽  
Mona O. Mohsen ◽  
Liang Hong ◽  
Yuhang Zhou ◽  
...  

AbstractThe recently ermerging disease COVID-19 is caused by the new SARS-CoV-2 virus first detected in the city of Wuhan, China. From there it has been rapidly spreading inside and outside China. With initial death rates around 4%, COVID-19 patients at longer distances from Wuhan showed reduced mortality as was previously observed for the SARS coronavirus. However, the new coronavirus spreads more strongly, as it sheds long before onset of symptoms or may be transmitted by people without symptoms. Rapid development of a protective vaccine against COVID-19 is therefore of paramount importance. Here we demonstrate that recombinantly expressed receptor binding domain (RBD) of the spike protein homologous to SARS binds to ACE2, the viral receptor. Higly repetitive display of RBD on immunologically optimized virus-like particles derived from cucumber mosaic virus resulted in a vaccine candidate (RBD-CuMVTT) that induced high levels of specific antibodies in mice which were able to block binding of spike protein to ACE2 and potently neutralized the SARS-CoV-2 virus in vitro.

Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 395
Author(s):  
Lisha Zha ◽  
Xinyue Chang ◽  
Hongxin Zhao ◽  
Mona O. Mohsen ◽  
Liang Hong ◽  
...  

The ongoing coronavirus disease (COVID-19) pandemic is caused by a new coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) first reported in Wuhan City, China. From there, it has been rapidly spreading to many cities inside and outside China. Nowadays, more than 110 million cases with deaths surpassing 2 million have been recorded worldwide, thus representing a major health and economic issues. Rapid development of a protective vaccine against COVID-19 is therefore of paramount importance. Here, we demonstrated that the recombinantly expressed receptor-binding domain (RBD) of the spike protein can be coupled to immunologically optimized virus-like particles derived from cucumber mosaic virus (CuMVTT). The RBD displayed CuMVTT bound to ACE2, the viral receptor, demonstrating proper folding of RBD. Furthermore, a highly repetitive display of the RBD on CuMVTT resulted in a vaccine candidate that induced high levels of specific antibodies in mice, which were able to block binding of the spike protein to ACE2 and potently neutralize SARS-CoV-2 virus in vitro.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2020 ◽  
Vol 18 ◽  
Author(s):  
Diego Guidolin ◽  
Cinzia Tortorella ◽  
Deanna Anderlini ◽  
Manuela Marcoli ◽  
Guido Maura

Background: Angiotensin Converting Enzyme 2 (ACE2) is primarily involved in the maturation of angiotensin. It also represents the main receptor for the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) that caused the serious epidemics COVID-19. Available evidence indicates that at the cell membrane ACE2 can form heteromeric complexes with other membrane proteins, including the amino acid transporter B0AT1 and G Protein-Coupled Receptors (GPCR). Objective: It is well known that during the formation of quaternary structures, the configuration of each single monomer is re-shaped by its interaction pattern in the macromolecular complex. Therefore, it can be hypothesized that the affinity of ACE2 to the viral receptor binding domain (RBD), when in a heteromeric complex, may depend on the associated partner. Method: By using established docking and molecular dynamics procedures, the reshaping of monomer was explored in silico to predict possible heterodimeric structures between ACE2 and GPCR, such as angiotensin and bradykinin receptors. The associated possible changes in binding affinity between the viral RBD and ACE2 when in the heteromeric complexes were also estimated. Results and Conclusion: The results provided support to the hypothesis that the heteromerization state of ACE2 may modulate its affinity to the viral RBD. If experimentally confirmed, ACE2 heteromerization may contribute to explain the observed differences in susceptibility to virus infection among individuals and to devise new therapeutic opportunities.


2021 ◽  
Author(s):  
Kouji Kobiyama ◽  
Masaki Imai ◽  
Nao Jounai ◽  
Misako Nakayama ◽  
Kou Hioki ◽  
...  

In 2020, two mRNA-based vaccines, encoding the full length of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, have been introduced for control of the coronavirus disease (COVID-19) pandemic1,2. However, reactogenicity, such as fever, caused by innate immune responses to the vaccine formulation remains to be improved. Here, we optimized a lipid nanoparticle (LNP)-based mRNA vaccine candidate, encoding the SARS-CoV-2 spike protein receptor-binding domain (LNP-mRNA-RBD), which showed improved immunogenicity by removing reactogenic materials from the vaccine formulation and protective potential against SARS-CoV-2 infection in cynomolgus macaques. LNP-mRNA-RBD induced robust antigen-specific B cells and follicular helper T cells in the BALB/c strain but not in the C57BL/6 strain; the two strains have contrasting abilities to induce type I interferon production by dendritic cells. Removal of reactogenic materials from original synthesized mRNA by HPLC reduced type I interferon (IFN) production by dendritic cells, which improved immunogenicity. Immunization of cynomolgus macaques with an LNP encapsulating HPLC-purified mRNA induced robust anti-RBD IgG in the plasma and in various mucosal areas, including airways, thereby conferring protection against SARS-CoV-2 infection. Therefore, fine-tuning the balance between the immunogenic and reactogenic activity of mRNA-based vaccine formulations may offer safer and more efficacious outcomes.


Author(s):  
George Tetz ◽  
Victor Tetz

Currently, the world is struggling with the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Prion-like domains are critical for virulence and the development of therapeutic targets; however, the prion-like domains in the SARS-CoV-2 proteome have not been analyzed. In this in silico study, using the PLAAC algorithm, we identified the presence of prion-like domains in SARS-CoV-2 spike protein. Compared with other viruses, a striking difference was observed in the distribution of prion-like domains in the spike, since SARS-CoV-2 was the only coronavirus with a prion-like domain found in the receptor-binding domain of the S1 region of the spike protein. The presence and unique distribution of prion-like domains in the SARS-CoV-2 receptor-binding domains of spike proteins is particularly interesting, since although SARS-CoV-2 and SARS-CoV S share the same host cell receptor, angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 demonstrates a 10- to 20-fold higher affinity for ACE2. Finally, we identified prion-like domains in the α1 helix of the ACE2 receptor that interacts with the viral receptor-binding domain of SARS-CoV-2. Taken together, the present findings indicate that the identified PrDs in the SARS-CoV-2 receptor-binding domain (RBD) and ACE2 region that interacts with RBD have important functional roles in viral adhesion and entry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tripti Shrivastava ◽  
Balwant Singh ◽  
Zaigham Abbas Rizvi ◽  
Rohit Verma ◽  
Sandeep Goswami ◽  
...  

The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.


2021 ◽  
Vol 14 (10) ◽  
pp. 954
Author(s):  
Paolo Coghi ◽  
Li Jun Yang ◽  
Jerome P. L. Ng ◽  
Richard K. Haynes ◽  
Maurizio Memo ◽  
...  

Host cell invasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by the interaction of the viral spike protein (S) with human angiotensin-converting enzyme 2 (ACE2) through the receptor-binding domain (RBD). In this work, computational and experimental techniques were combined to screen antimalarial compounds from different chemical classes, with the aim of identifying small molecules interfering with the RBD-ACE2 interaction and, consequently, with cell invasion. Docking studies showed that the compounds interfere with the same region of the RBD, but different interaction patterns were noted for ACE2. Virtual screening indicated pyronaridine as the most promising RBD and ACE2 ligand, and molecular dynamics simulations confirmed the stability of the predicted complex with the RBD. Bio-layer interferometry showed that artemisone and methylene blue have a strong binding affinity for RBD (KD = 0.363 and 0.226 μM). Pyronaridine also binds RBD and ACE2 in vitro (KD = 56.8 and 51.3 μM). Overall, these three compounds inhibit the binding of RBD to ACE2 in the μM range, supporting the in silico data.


2021 ◽  
Author(s):  
Haolin Liu ◽  
Pengcheng Wei ◽  
Qianqian Zhang ◽  
Zhongzhou Chen ◽  
Katja Aviszus ◽  
...  

AbstractWe generated several versions of the receptor binding domain (RBD) of the Spike protein with mutations existing within newly emerging variants from South Africa and Brazil. We found that the mutant RBD with K417N, E484K, and N501Y exchanges has higher binding affinity to the human receptor compared to the wildtype RBD. This mutated version of RBD also completely abolishes the binding to a therapeutic antibody, Bamlanivimab, in vitro.


ACS Nano ◽  
2021 ◽  
Vol 15 (2) ◽  
pp. 2738-2752 ◽  
Author(s):  
Yin-Feng Kang ◽  
Cong Sun ◽  
Zhen Zhuang ◽  
Run-Yu Yuan ◽  
Qingbing Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document