scholarly journals Optimization of an LNP-mRNA vaccine candidate targeting SARS-CoV-2 receptor-binding domain

2021 ◽  
Author(s):  
Kouji Kobiyama ◽  
Masaki Imai ◽  
Nao Jounai ◽  
Misako Nakayama ◽  
Kou Hioki ◽  
...  

In 2020, two mRNA-based vaccines, encoding the full length of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, have been introduced for control of the coronavirus disease (COVID-19) pandemic1,2. However, reactogenicity, such as fever, caused by innate immune responses to the vaccine formulation remains to be improved. Here, we optimized a lipid nanoparticle (LNP)-based mRNA vaccine candidate, encoding the SARS-CoV-2 spike protein receptor-binding domain (LNP-mRNA-RBD), which showed improved immunogenicity by removing reactogenic materials from the vaccine formulation and protective potential against SARS-CoV-2 infection in cynomolgus macaques. LNP-mRNA-RBD induced robust antigen-specific B cells and follicular helper T cells in the BALB/c strain but not in the C57BL/6 strain; the two strains have contrasting abilities to induce type I interferon production by dendritic cells. Removal of reactogenic materials from original synthesized mRNA by HPLC reduced type I interferon (IFN) production by dendritic cells, which improved immunogenicity. Immunization of cynomolgus macaques with an LNP encapsulating HPLC-purified mRNA induced robust anti-RBD IgG in the plasma and in various mucosal areas, including airways, thereby conferring protection against SARS-CoV-2 infection. Therefore, fine-tuning the balance between the immunogenic and reactogenic activity of mRNA-based vaccine formulations may offer safer and more efficacious outcomes.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tripti Shrivastava ◽  
Balwant Singh ◽  
Zaigham Abbas Rizvi ◽  
Rohit Verma ◽  
Sandeep Goswami ◽  
...  

The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.


Author(s):  
Lisha Zha ◽  
Hongxin Zhao ◽  
Mona O. Mohsen ◽  
Liang Hong ◽  
Yuhang Zhou ◽  
...  

AbstractThe recently ermerging disease COVID-19 is caused by the new SARS-CoV-2 virus first detected in the city of Wuhan, China. From there it has been rapidly spreading inside and outside China. With initial death rates around 4%, COVID-19 patients at longer distances from Wuhan showed reduced mortality as was previously observed for the SARS coronavirus. However, the new coronavirus spreads more strongly, as it sheds long before onset of symptoms or may be transmitted by people without symptoms. Rapid development of a protective vaccine against COVID-19 is therefore of paramount importance. Here we demonstrate that recombinantly expressed receptor binding domain (RBD) of the spike protein homologous to SARS binds to ACE2, the viral receptor. Higly repetitive display of RBD on immunologically optimized virus-like particles derived from cucumber mosaic virus resulted in a vaccine candidate (RBD-CuMVTT) that induced high levels of specific antibodies in mice which were able to block binding of spike protein to ACE2 and potently neutralized the SARS-CoV-2 virus in vitro.


Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Johnny Chun-Chau Sung ◽  
Ying Liu ◽  
Kam-Chau Wu ◽  
Man-Chung Choi ◽  
Chloe Ho-Yi Ma ◽  
...  

Various types of vaccines, such as mRNA, adenovirus, and inactivated virus by injection, have been developed to prevent SARS-CoV-2 infection. Although some of them have already been approved under the COVID-19 pandemic, various drawbacks, including severe side effects and the requirement for sub-zero temperature storage, may hinder their applications. Bacillus subtilis (B. subtilis) is generally recognized as a safe and endotoxin-free Gram-positive bacterium that has been extensively employed as a host for the expression of recombinant proteins. Its dormant spores are extraordinarily resistant to the harsh environment in the gastrointestinal tract. This feature makes it an ideal carrier for oral administration in resisting this acidic environment and for release in the intestine. In this study, an engineered B. subtilis spore expressing the SARS-CoV-2 spike protein receptor binding domain (sRBD) on the spore surface was developed. In a pilot test, no adverse health event was observed in either mice or healthy human volunteers after three oral courses of B. subtilis spores. Significant increases in neutralizing antibody against sRBD, in both mice and human volunteers, after oral administration were also found. These findings may enable the further clinical developments of B. subtilis spores as an oral vaccine candidate against COVID-19 in the future.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3279
Author(s):  
Dante Barreda ◽  
César Santiago ◽  
Juan R. Rodríguez ◽  
José F. Rodríguez ◽  
José M. Casasnovas ◽  
...  

Dendritic cells (DCs) are the most potent antigen-presenting cells, and their function is essential to configure adaptative immunity and avoid excessive inflammation. DCs are predicted to play a crucial role in the clinical evolution of the infection by the severe acute respiratory syndrome (SARS) coronavirus (CoV)-2. DCs interaction with the SARS-CoV-2 Spike protein, which mediates cell receptor binding and subsequent fusion of the viral particle with host cell, is a key step to induce effective immunity against this virus and in the S protein-based vaccination protocols. Here we evaluated human DCs in response to SARS-CoV-2 S protein, or to a fragment encompassing the receptor binding domain (RBD) challenge. Both proteins increased the expression of maturation markers, including MHC molecules and costimulatory receptors. DCs interaction with the SARS-CoV-2 S protein promotes activation of key signaling molecules involved in inflammation, including MAPK, AKT, STAT1, and NFκB, which correlates with the expression and secretion of distinctive proinflammatory cytokines. Differences in the expression of ACE2 along the differentiation of human monocytes to mature DCs and inter-donor were found. Our results show that SARS-CoV-2 S protein promotes inflammatory response and provides molecular links between individual variations and the degree of response against this virus.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


Sign in / Sign up

Export Citation Format

Share Document