scholarly journals Structure-function properties in disordered condensates

2020 ◽  
Author(s):  
Kamal Bhandari ◽  
Michael A. Cotten ◽  
Jonggul Kim ◽  
Michael K. Rosen ◽  
Jeremy D. Schmit

Biomolecular condensates appear throughout the cell serving a wide variety of functions. Many condensates appear to form by the assembly of multivalent molecules, which produce phase separated networks with liquid-like properties. These networks then recruit client molecules, with the total composition providing functionality. Here we use a model system of poly-SUMO and poly-SIM proteins to understand client-network interactions and find that the structure of the network plays a strong role in defining client recruitment, and thus functionality. The basic unit of assembly in this system is a zipper-like filament composed of alternating poly-SUMO and poly-SIM molecules. These filaments have defects of unsatisfied bonds that allow for both the formation of a 3D network and the recruitment of clients. The filamentous structure constrains the scaffold stoichiometries and the distribution of client recruitment sites that the network can accommodate. This results in a non-monotonic client binding response that can be tuned independently by the client valence and binding energy. These results show how the interactions within liquid states can be disordered yet still contain structural features that provide functionality to the condensate.

Antibodies ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 57 ◽  
Author(s):  
Patrícia de Sousa-Pereira ◽  
Jenny M. Woof

Immunoglobulin A (IgA) plays a key role in defending mucosal surfaces against attack by infectious microorganisms. Such sites present a major site of susceptibility due to their vast surface area and their constant exposure to ingested and inhaled material. The importance of IgA to effective immune defence is signalled by the fact that more IgA is produced than all the other immunoglobulin classes combined. Indeed, IgA is not just the most prevalent antibody class at mucosal sites, but is also present at significant concentrations in serum. The unique structural features of the IgA heavy chain allow IgA to polymerise, resulting in mainly dimeric forms, along with some higher polymers, in secretions. Both serum IgA, which is principally monomeric, and secretory forms of IgA are capable of neutralising and removing pathogens through a range of mechanisms, including triggering the IgA Fc receptor known as FcαRI or CD89 on phagocytes. The effectiveness of these elimination processes is highlighted by the fact that various pathogens have evolved mechanisms to thwart such IgA-mediated clearance. As the structure–function relationships governing the varied capabilities of this immunoglobulin class come into increasingly clear focus, and means to circumvent any inherent limitations are developed, IgA-based monoclonal antibodies are set to emerge as new and potent options in the therapeutic arena.


2020 ◽  
Author(s):  
Ginikanda Yapa Mudiyanselage Nayani Thanuja Ilangakoon

Semi-arid ecosystems cover approximately 40% of the earth's terrestrial landscape and show high dynamicity in ecosystem structure and function. These ecosystems play a critical role in global carbon dynamics, productivity, and habitat quality. Semi-arid ecosystems experience a high degree of disturbance that can severely alter ecosystem services and processes. Understanding the structure-function relationships across spatial extents are critical in order to assess their demography, response to disturbance, and for conservation management. In this research, using state-of-the-art full waveform lidar (airborne and spaceborne) and field observations, I developed a framework to assess the complexity and dynamics of vegetation structure, function and diversity across spatial scales in a semi-arid ecosystem. Difficulty in differentiating low stature vegetation from bare ground is the key remote sensing challenge in semi-arid ecosystems. In this study, I developed a workflow to differentiate key plant functional types (PFTs) using both structural and biophysical variables derived from the full waveform lidar and an ensemble random forest technique. The results revealed that waveform lidar pulse width can clearly distinguish shrubs from bare ground. The models showed PFT classification accuracy of 0.81-0.86% and 0.60-0.70% at 10 m and 1 m spatial resolutions, respectively. I found that structural variables were more important than the biophysical variables to differentiate the PFTs in this study area. The study further revealed an overlap between the structural features of different PFTs (e.g. shrubs from trees). Using structural features, I derived three main functional traits (canopy height, plant area index and foliage height diversity) of shrubs and trees that describe canopy architecture and light use efficiency of the ecosystem. I evaluated the trends and patterns of functional diversity and their relationship with non-climatic abiotic factors and fire disturbance. In addition to the fine resolution airborne lidar, I used simulated large footprint spaceborne lidar representing the newly launched Global Ecosystem Dynamics Investigation system (GEDI, a lidar sensor on the International Space Station) to evaluate the potential of capturing functional diversity trends of semi-arid ecosystems at global scales. The consistency of diversity trends between the airborne lidar and GEDI confirmed GEDI's potential to capture functional diversity. I found that the functional diversity in this ecosystem is mainly governed by the local elevation gradient, soil type, and slope. All three functional diversity indices (functional richness, functional evenness and functional divergence) showed a diversity breakpoint near elevations of 1500 m - 1700 m. Functional diversity of fire-disturbed areas revealed that the fires in our study area resulted in a more even and less divergent ecosystem state. Finally, I quantified aboveground biomass using the structural features derived from both the airborne lidar and GEDI data. Regional estimates of biomass can indicate whether an ecosystem is a net carbon sink or source as well as the ecosystem's health (e.g. biodiversity). Further, the potential of large footprint lidar data to estimate biomass in semi-arid ecosystems are not yet fully explored due to the inherent overlapping vegetation responses in the ground signals that can be affected by the ground slope. With a correction to the slope effect, I found that large footprint lidar can explain 42% of variance of biomass with a RMSE of 351 kg/ha (16% RMSE). The model estimated 82% of the study area with less than 50% uncertainty in biomass estimates. The cultivated areas and the areas with high functional richness showed the highest uncertainties. Overall, this dissertation establishes a novel framework to assess the complexity and dynamics of vegetation structure and function of a semi-arid ecosystem from space. This work enhances our understanding of the present state of an ecosystem and provides a foundation for using full waveform lidar to understand the impact of these changes to ecosystem productivity, biodiversity and habitat quality in the coming decades. The methods and algorithms in this dissertation can be directly applied to similar ecosystems with relevant corrections for the appropriate sensor. In addition, this study provides insights to related NASA missions such as ICESat-2 and future NASA missions such as NISAR for deriving vegetation structure and dynamics related to disturbance.


2015 ◽  
Vol 11 (5) ◽  
pp. 1370-1377 ◽  
Author(s):  
Vishnya Stoyanova ◽  
Vanya Bogoeva ◽  
Lidiya Petrova ◽  
Magdalena Tchorbadjieva ◽  
Svetla Petrova ◽  
...  

We analyzed the structural features of C1q that underlie its autoantigenicity by the means of a model system using an amphiphilic polyzwitterion (PZ).


2018 ◽  
Vol 6 (5) ◽  
pp. 2034-2046 ◽  
Author(s):  
David Degler ◽  
Sabrina A. Müller ◽  
Dmitry E. Doronkin ◽  
Di Wang ◽  
Jan-Dierk Grunwaldt ◽  
...  

The presented work unravels the complex structure–function-relationships of Pt-loaded SnO2, namely the sensitization by a Fermi-control mechanism and relation of catalytic activity and gas sensing effect.


2005 ◽  
Vol 127 (5) ◽  
pp. 742-750 ◽  
Author(s):  
Stavros Thomopoulos ◽  
Gregory M. Fomovsky ◽  
Jeffrey W. Holmes

An in vitro model system was developed to study structure-function relationships and the development of structural and mechanical anisotropy in collagenous tissues. Fibroblast-populated collagen gels were constrained either biaxially or uniaxially. Gel remodeling, biaxial mechanical properties, and collagen orientation were determined after 72h of culture. Collagen gels contracted spontaneously in the unconstrained direction, uniaxial mechanical constraints produced structural anisotropy, and this structural anisotropy was associated with mechanical anisotropy. Cardiac and tendon fibroblasts were compared to test the hypothesis that tendon fibroblasts should generate greater anisotropy in vitro. However, no differences were seen in either structure or mechanics of collagen gels populated with these two cell types, or between fibroblast populated gels and acellular gels. This study demonstrates our ability to control and measure the development of structural and mechanical anisotropy due to imposed mechanical constraints in a fibroblast-populated collagen gel model system. While imposed constraints were required for the development of anisotropy in this system, active remodeling of the gel by fibroblasts was not. This model system will provide a basis for investigating structure-function relationships in engineered constructs and for studying mechanisms underlying the development of anisotropy in collagenous tissues.


2012 ◽  
Vol 67 (11-12) ◽  
pp. 565-570 ◽  
Author(s):  
Kristina Jenett-Siems ◽  
Nadin Krause ◽  
Karsten Siems ◽  
Sven Jakupovic ◽  
Gerd Wallukat ◽  
...  

A study of the components of Paris quadrifolia was undertaken to identify compounds with potential influence on cardiac cells, since previous reports suggested a cardiotoxic risk of this plant. Compounds isolated and identified included one new steroidal saponin, (23S,24S)- spirosta-5,25(27)-diene-1β,3β,21,23,24-pentol-1-O-β-D-apiofuranosyl-(1→3)-α-L-rhamnopyranosyl-( 1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranoside 21- O- β- D- apiofuranoside 24-O-β-D-fucopyranoside (1), demonstrating quite unusual structural features, as well as the known compounds 26-O-β-D-glucopyranosyl-(25R)-5-en-furost-3β,17α,22α,26-tetraol- 3- O- α- L- rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-[α-L-rhamnopyranosyl - -(1→2)]- β- D- glucopyranoside (2), pennogenin 3-O-α-L-rhamnopyranosyl-(1→4)-α-L-rhamno pyranosyl- (1→4)-[α-L-rhamnopyranosyl-(1→ 2)]-β -D- glucopyranoside (3), 7- O- β- D-glucopyranosyl- kaempferol-3- O- β- D-glucopyranosyl-(1→2)-β- D-galactopyranoside (4), kaem pferol- 3-O-β-D-glucopyranosyl-(1→2)-β-D-galactopyranoside (5), 5-hydroxyecdysterone (6), and 20-hydroxyecdysone (7). The pennogenin derivative 3 showed strong cardiotoxic effects in an in vitro cellular model system, whereas the respective furostanol derivative 2 was inactive.


2015 ◽  
Vol 108 (2) ◽  
pp. 115a
Author(s):  
Jesse L. Silverberg ◽  
Moumita Das ◽  
Aliyah R. Barrett ◽  
Poul B. Petersen ◽  
Lawrence J. Bonassar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document