scholarly journals Replicating infant astrocyte behavior in the adult after brain injury improves outcomes

2020 ◽  
Author(s):  
Leon Teo ◽  
Anthony G. Boghdadi ◽  
Jihane Homman-Ludiye ◽  
Iñaki Carril-Mundiñano ◽  
William C. Kwan ◽  
...  

AbstractInfants and adults respond differently to brain injuries. Specifically, improved neuronal sparing along with reduced astrogliosis and glial scarring often observed earlier in life, likely contributes to improved long-term outcomes. Understanding the underlying mechanisms could enable the recapitulation of neuroprotective effects, observed in infants, to benefit adult patients after brain injuries. We reveal that in primates, Eph/ ephrin signaling contributes to age-dependent reactive astrocyte behavior. Ephrin-A5 expression on astrocytes was more protracted in adults, whereas ephrin-A1 was associated only with infant astrocytes. Furthermore, ephrin-A5 exacerbated major hallmarks of astrocyte reactivity via EphA2 and EphA4 receptors, which was subsequently alleviated by ephrin-A1. Rather than suppressing reactivity, ephrin-A1 signaling shifted astrocytes towards GAP43+ neuroprotection, accounting for improved neuronal sparing in infants. Reintroducing ephrin-A1 after middle-aged ischemic stroke significantly attenuated glial scarring, improved neuronal sparing and preserved circuitry. Therefore, beneficial infant mechanisms can be recapitulated in adults to improve outcomes after CNS injuries.

2021 ◽  
Author(s):  
Changjun Yang ◽  
Bianca P Lavayen ◽  
Lei Liu ◽  
Brian D Sanz ◽  
Kelly M DeMars ◽  
...  

Adropin is a highly-conserved peptide that has been shown to preserve endothelial barrier function. Blood-brain barrier (BBB) disruption is a key pathological event in cerebral ischemia. However, the effects of adropin on ischemic stroke outcomes remain unexplored. Hypothesizing that adropin exerts neuroprotective effects by maintaining BBB integrity, we investigated the role of adropin in stroke pathology utilizing loss- and gain-of-function genetic approaches combined with pharmacological treatment with synthetic adropin peptide. Stroke decreased endogenous adropin levels in the brain and plasma. Adropin treatment or transgenic adropin overexpression robustly reduced brain injury and improved long-term sensorimotor and cognitive function in young and aged mice subjected to ischemic stroke. In contrast, genetic deletion of adropin exacerbated ischemic brain injury. Mechanistically, adropin neuroprotection depends on endothelial nitric oxide synthase and is associated with reduced BBB permeability and neuroinflammation. We identify adropin as a novel neuroprotective peptide with the potential to improve stroke outcomes.


Author(s):  
Oscar D. Guillamondegui

Traumatic brain injury (TBI) is a serious epidemic in the United States. It affects patients of all ages, race, and socioeconomic status (SES). The current care of these patients typically manifests after sequelae have been identified after discharge from the hospital, long after the inciting event. The purpose of this article is to introduce the concept of identification and management of the TBI patient from the moment of injury through long-term care as a multidisciplinary approach. By promoting an awareness of the issues that develop around the acutely injured brain and linking them to long-term outcomes, the trauma team can initiate care early to alter the effect on the patient, family, and community. Hopefully, by describing the care afforded at a trauma center and by a multidisciplinary team, we can bring a better understanding to the armamentarium of methods utilized to treat the difficult population of TBI patients.


Author(s):  
Kenichi Sakuta ◽  
Hiroshi Yaguchi ◽  
Ryoji Nakada ◽  
Takeo Sato ◽  
Tomomichi Kitagawa ◽  
...  

2014 ◽  
Vol 219 (4) ◽  
pp. e144-e145
Author(s):  
Elizabeth Shinn ◽  
Amy Pate ◽  
Frederique Pinto ◽  
Akella Chendrasekhar

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Rany Vorn ◽  
Maiko Suarez ◽  
Jacob C. White ◽  
Carina A. Martin ◽  
Hyung-Suk Kim ◽  
...  

Chronic mild traumatic brain injury (mTBI) has long-term consequences, such as neurological disability, but its pathophysiological mechanism is unknown. Exosomal microRNAs (exomiRNAs) may be important mediators of molecular and cellular changes involved in persistent symptoms after mTBI. We profiled exosomal microRNAs (exomiRNAs) in plasma from young adults with or without a chronic mTBI to decipher the underlying mechanisms of its long-lasting symptoms after mTBI. We identified 25 significantly dysregulated exomiRNAs in the chronic mTBI group (n = 29, with 4.48 mean years since the last injury) compared to controls (n = 11). These miRNAs are associated with pathways of neurological disease, organismal injury and abnormalities, and psychological disease. Dysregulation of these plasma exomiRNAs in chronic mTBI may indicate that neuronal inflammation can last long after the injury and result in enduring and persistent post-injury symptoms. These findings are useful for diagnosing and treating chronic mTBIs.


Radiology ◽  
2016 ◽  
Vol 280 (1) ◽  
pp. 212-219 ◽  
Author(s):  
Jeffrey B. Ware ◽  
Rosette C. Biester ◽  
Elizabeth Whipple ◽  
Keith M. Robinson ◽  
Richard J. Ross ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document