Long-term outcomes after mild traumatic brain injury

2014 ◽  
Vol 219 (4) ◽  
pp. e144-e145
Author(s):  
Elizabeth Shinn ◽  
Amy Pate ◽  
Frederique Pinto ◽  
Akella Chendrasekhar
Radiology ◽  
2016 ◽  
Vol 280 (1) ◽  
pp. 212-219 ◽  
Author(s):  
Jeffrey B. Ware ◽  
Rosette C. Biester ◽  
Elizabeth Whipple ◽  
Keith M. Robinson ◽  
Richard J. Ross ◽  
...  

2017 ◽  
Vol 24 (10) ◽  
pp. 1448-1458 ◽  
Author(s):  
Kelly M Jones ◽  
Alice Theadom ◽  
Suzanne Barker-Collo ◽  
Elizabeth Broadbent ◽  
Valery L Feigin ◽  
...  

Characteristics of patient’s drawings have been linked to short-term health-related outcomes across a range of health conditions. This study examined associations between brain drawings at 1 month and illness perceptions and post-concussion symptoms at 4 years in 92 adults following mild traumatic brain injury. Greater damage depicted at 1 month was correlated with perceived greater impact on life, duration of injury, symptoms of brain injury, emotional consequences and late-onset post-concussion symptoms. Results indicate that brain drawings shortly after traumatic brain injury offer a simple and insightful tool that may help to identify those who need additional support to improve long-term outcomes.


2011 ◽  
Vol 28 (6) ◽  
pp. 937-946 ◽  
Author(s):  
Jennie Ponsford ◽  
Peter Cameron ◽  
Mark Fitzgerald ◽  
Michele Grant ◽  
Antonina Mikocka-Walus

Author(s):  
Oscar D. Guillamondegui

Traumatic brain injury (TBI) is a serious epidemic in the United States. It affects patients of all ages, race, and socioeconomic status (SES). The current care of these patients typically manifests after sequelae have been identified after discharge from the hospital, long after the inciting event. The purpose of this article is to introduce the concept of identification and management of the TBI patient from the moment of injury through long-term care as a multidisciplinary approach. By promoting an awareness of the issues that develop around the acutely injured brain and linking them to long-term outcomes, the trauma team can initiate care early to alter the effect on the patient, family, and community. Hopefully, by describing the care afforded at a trauma center and by a multidisciplinary team, we can bring a better understanding to the armamentarium of methods utilized to treat the difficult population of TBI patients.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Huazhen Chen ◽  
Karl Kevala ◽  
Elma Aflaki ◽  
Juan Marugan ◽  
Hee-Yong Kim

Abstract Background Repetitive mild traumatic brain injury (mTBI) can result in chronic visual dysfunction. G-protein receptor 110 (GPR110, ADGRF1) is the target receptor of N-docosahexaenoylethanolamine (synaptamide) mediating the anti-neuroinflammatory function of synaptamide. In this study, we evaluated the effect of an endogenous and a synthetic ligand of GPR110, synaptamide and (4Z,7Z,10Z,13Z,16Z,19Z)-N-(2-hydroxy-2-methylpropyl) docosa-4,7,10,13,16,19-hexaenamide (dimethylsynaptamide, A8), on the mTBI-induced long-term optic tract histopathology and visual dysfunction using Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), a clinically relevant model of mTBI. Methods The brain injury in wild-type (WT) and GPR110 knockout (KO) mice was induced by CHIMERA applied daily for 3 days, and GPR110 ligands were intraperitoneally injected immediately following each impact. The expression of GPR110 and proinflammatory mediator tumor necrosis factor (TNF) in the brain was measured by using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in an acute phase. Chronic inflammatory responses in the optic tract and visual dysfunction were assessed by immunostaining for Iba-1 and GFAP and visual evoked potential (VEP), respectively. The effect of GPR110 ligands in vitro was evaluated by the cyclic adenosine monophosphate (cAMP) production in primary microglia isolated from adult WT or KO mouse brains. Results CHIMERA injury acutely upregulated the GPR110 and TNF gene level in mouse brain. Repetitive CHIMERA (rCHIMERA) increased the GFAP and Iba-1 immunostaining of glia cells and silver staining of degenerating axons in the optic tract with significant reduction of N1 amplitude of visual evoked potential at up to 3.5 months after injury. Both GPR110 ligands dose- and GPR110-dependently increased cAMP in cultured primary microglia with A8, a ligand with improved stability, being more effective than synaptamide. Intraperitoneal injection of A8 at 1 mg/kg or synaptamide at 5 mg/kg significantly reduced the acute expression of TNF mRNA in the brain and ameliorated chronic optic tract microgliosis, astrogliosis, and axonal degeneration as well as visual deficit caused by injury in WT but not in GPR110 KO mice. Conclusion Our data demonstrate that ligand-induced activation of the GPR110/cAMP system upregulated after injury ameliorates the long-term optic tract histopathology and visual impairment caused by rCHIMERA. Based on the anti-inflammatory nature of GPR110 activation, we suggest that GPR110 ligands may have therapeutic potential for chronic visual dysfunction associated with mTBI.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Rany Vorn ◽  
Maiko Suarez ◽  
Jacob C. White ◽  
Carina A. Martin ◽  
Hyung-Suk Kim ◽  
...  

Chronic mild traumatic brain injury (mTBI) has long-term consequences, such as neurological disability, but its pathophysiological mechanism is unknown. Exosomal microRNAs (exomiRNAs) may be important mediators of molecular and cellular changes involved in persistent symptoms after mTBI. We profiled exosomal microRNAs (exomiRNAs) in plasma from young adults with or without a chronic mTBI to decipher the underlying mechanisms of its long-lasting symptoms after mTBI. We identified 25 significantly dysregulated exomiRNAs in the chronic mTBI group (n = 29, with 4.48 mean years since the last injury) compared to controls (n = 11). These miRNAs are associated with pathways of neurological disease, organismal injury and abnormalities, and psychological disease. Dysregulation of these plasma exomiRNAs in chronic mTBI may indicate that neuronal inflammation can last long after the injury and result in enduring and persistent post-injury symptoms. These findings are useful for diagnosing and treating chronic mTBIs.


Sign in / Sign up

Export Citation Format

Share Document