scholarly journals A composite filter for low FDR of protein-protein interactions detected by in vivo cross-linking

2020 ◽  
Author(s):  
Luitzen de Jong ◽  
Winfried Roseboom ◽  
Gertjan Kramer

AbstractIn vivo chemical cross-linking combined with LCMSMS of digested extracts (in vivo CX-MS) can reveal stable and dynamic protein-protein interactions at a proteome wide-scale and at the peptide level. In vivo CX-MS requires a membrane permeable and cleavable cross-linker that enables isolation of target peptides and a fast and sensitive search engine to identify the linked peptides. Here we explore the use of the search engine pLink 2 for analysis of a previously obtained LCMSMS dataset from exponentially growing Bacillus subtilis treated in culture with the cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). Cross-linked peptide pairs were identified by pLink 2 in very short time at an overall FDR of < 5%. To also obtain a FDR < 5% for inter-protein cross-linked peptide pairs additional thresholds values were applied for matched fragment intensity and for the numbers of unambiguous y and b ions to be assigned for both composite peptides. Threshold values were based on a set of decoy sequences from yeast and human sequence databases. Also the mass- and charge-dependent retention times of target peptides purified by diagonal strong cation exchange chromatography were used as a criterion to distinguish true from false positives. After this filtering, pLink 2 identified more than 80% of previously reported protein-protein interactions. In addition the use of pLink 2 revealed interesting new inter-protein cross-linked peptide pairs, among others showing interactions between the global transcriptional repressor AbrB and elongation factor Tu and between the essential protein YlaN of unknown function and the ferric uptake repressor Fur.Abstract FigureHighlightsImproved protocol for identification of PPIs at low FDR by in vivo cross-linking with BAMGThe use of all intra-protein cross-linked peptide pairs as true positivesThe cytosolic aminopeptidase (AMPA_BACSU) interacts with the 50S ribosomal protein L17The transition state regulator AbrB interacts with elongation factor TuThe essential protein YlaN of unknown function interacts with the iron uptake repressor FurSignificanceImportant for reliable identification of PPIs by chemical cross-linking in vivo is a low FDR of non-redundant inter-protein peptide pairs. Here we describe how to recognize the presence of spurious interactions in a dataset of cross-linked peptide pairs enriched by 2D strong cation exchange chromatography and identified by LCMSMS by taking into account chromatographic behavior of cross-linked peptide pairs and protein abundance of corresponding peptides. Based on these criteria we assessed that the FDR of the fraction of non-redundant inter-protein cross-linked peptide pairs was approx. 20-25% by interrogating an entire species specific database at an overall FDR of 5% or 0.1% with a search engine that otherwise scores best in sensitivity among other search engines. We have defined a composite filter to decrease this high FDR of inter-protein cross-linked peptide pairs to only about 2%.

Author(s):  
Liqing Jia ◽  
Xiaolu Ge ◽  
Chao Du ◽  
Linna Chen ◽  
Yanhong Zhou ◽  
...  

Abstract Background Eukaryotic protein translation elongation factor 1α2 (EEF1A2) is an oncogene that promotes the progression of breast and pancreatic cancer. In this study, we aimed to elucidate the oncogenic function of EEF1A2 in the metastasis of lung adenocarcinoma (LUAD). Methods Immunohistochemistry and western blot were used to study EEF1A2 expression levels in LUAD tissues and cells, respectively. The role of EEF1A2 in LUAD progression were investigated in vitro and in vivo. We identified potential EEF1A2-binding proteins by liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. Protein–protein interactions were determined by immunofluorescence and co-immunoprecipitation (Co-IP). Results In this study, we report that EEF1A2 mediates the epithelial–mesenchymal transformation (EMT), to promote the metastasis of LUAD cells in vitro and in vivo. Moreover, EEF1A2 interacts with HSP90AB1 to increase TGFβ Receptor (TβR)-I, and TβRII expression, followed by enhanced SMAD3 and pSMAD3 expression and nuclear localisation, which promotes the EMT of LUAD cells. Overexpression of EEF1A2 in cancer tissues is associated with poor prognosis and short survival of patients with LUAD. Conclusions These findings underscore the molecular functions of EEF1A2 in LUAD metastasis and indicate that EEF1A2 represents a promising target in the treatment of aggressive LUAD.


2021 ◽  
Author(s):  
Dmitri R. Davydov ◽  
Bikash Dangi ◽  
Guihua Yue ◽  
Bhagwat Prasad ◽  
Viktor G. Zgoda

This study aimed on exploration of the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) in the human liver on drug metabolism. Using membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide (BPM) and 4-(N-succinimidylcarboxy)benzophenone (BPS), we explored the array of its protein-protein interactions (proteome) in human liver microsomes (HLM) with chemical cross-linking mass spectrometry (CXMS). Exposure of bait-incorporated HLM samples to light was followed by isolation of the His-tagged bait protein and its cross-linked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the cross-linked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively cross-linked partners of CYP2E1 are cytochromes P450 2A6, 3A4, 2C9, and 4A11. We also detected the conjugates of CYP2E1 with UDP-glucuronosyltransferases (UGTs) 1A6, 1A9, 2B4, 2B15, and 2B17. These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes. Of particular interest is the observation of efficient cross-linking of CYP2E1 with CYP4A11. This enzyme plays a central role in the synthesis of vasoactive eicosanoids and its interactions with alcohol-inducible CYP2E1 may shed light on the mechanisms of alcohol-induced hypertension.


2008 ◽  
Vol 8 (3) ◽  
pp. 409-420 ◽  
Author(s):  
Haizhen Zhang ◽  
Xiaoting Tang ◽  
Gerhard R. Munske ◽  
Nikola Tolic ◽  
Gordon A. Anderson ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Hamed Khakzad ◽  
Lotta Happonen ◽  
Guy Tran Van Nhieu ◽  
Johan Malmström ◽  
Lars Malmström

Protein–protein interactions are central in many biological processes, but they are challenging to characterize, especially in complex samples. Protein cross-linking combined with mass spectrometry (MS) and computational modeling is gaining increased recognition as a viable tool in protein interaction studies. Here, we provide insights into the structure of the multicomponent human complement system membrane attack complex (MAC) using in vivo cross-linking MS combined with computational macromolecular modeling. We developed an affinity procedure followed by chemical cross-linking on human blood plasma using live Streptococcus pyogenes to enrich for native MAC associated with the bacterial surface. In this highly complex sample, we identified over 100 cross-linked lysine–lysine pairs between different MAC components that enabled us to present a quaternary model of the assembled MAC in its native environment. Demonstrating the validity of our approach, this MAC model is supported by existing X-ray crystallographic and electron cryo-microscopic models. This approach allows the study of protein–protein interactions in native environment mimicking their natural milieu. Its high potential in assisting and refining data interpretation in electron cryo-tomographic experiments will be discussed.


2019 ◽  
Vol 19 (3) ◽  
pp. 554-568 ◽  
Author(s):  
Kumar Yugandhar ◽  
Ting-Yi Wang ◽  
Alden King-Yung Leung ◽  
Michael Charles Lanz ◽  
Ievgen Motorykin ◽  
...  

Protein-protein interactions play a vital role in nearly all cellular functions. Hence, understanding their interaction patterns and three-dimensional structural conformations can provide crucial insights about various biological processes and underlying molecular mechanisms for many disease phenotypes. Cross-linking mass spectrometry (XL-MS) has the unique capability to detect protein-protein interactions at a large scale along with spatial constraints between interaction partners. The inception of MS-cleavable cross-linkers enabled the MS2-MS3 XL-MS acquisition strategy that provides cross-link information from both MS2 and MS3 level. However, the current cross-link search algorithm available for MS2-MS3 strategy follows a “MS2-centric” approach and suffers from a high rate of mis-identified cross-links. We demonstrate the problem using two new quality assessment metrics [“fraction of mis-identifications” (FMI) and “fraction of interprotein cross-links from known interactions” (FKI)]. We then address this problem, by designing a novel “MS3-centric” approach for cross-link identification and implementing it as a search engine named MaXLinker. MaXLinker outperforms the currently popular search engine with a lower mis-identification rate, and higher sensitivity and specificity. Moreover, we performed human proteome-wide cross-linking mass spectrometry using K562 cells. Employing MaXLinker, we identified a comprehensive set of 9319 unique cross-links at 1% false discovery rate, comprising 8051 intraprotein and 1268 interprotein cross-links. Finally, we experimentally validated the quality of a large number of novel interactions identified in our study, providing a conclusive evidence for MaXLinker's robust performance.


Sign in / Sign up

Export Citation Format

Share Document