scholarly journals Machine learning analysis of the bleomycin-mouse model reveals the compartmental and temporal inflammatory pulmonary fingerprint

Author(s):  
Natalie Bordag ◽  
Valentina Biasin ◽  
Diana Schnoegl ◽  
Francesco Valzano ◽  
Katharina Jandl ◽  
...  

SummaryThe bleomycin mouse-model is the extensively used model to study pulmonary fibrosis, however, the inflammatory cell kinetics and their compartmentalisation is still incompletely understood. Here we assembled historical flow cytometry data, totalling 303 samples and 16 inflammatory-cell populations, and applied advanced data modelling and machine learning methods to conclusively detail these kinetics.Three days post-bleomycin, the inflammatory profile was typified by acute innate inflammation, pronounced neutrophilia, especially of SiglecF+ neutrophils, and alveolar macrophage loss. Between 14 and 21 days, rapid-responders were increasingly replaced by T and B cells, and monocyte-derived alveolar macrophages. Multi-colour imaging revealed the spatial-temporal cell distribution and the close association of T cells with deposited collagen.Unbiased immunophenotyping and data modelling exposed the dynamic shifts in immune-cell composition over the course of bleomycin-triggered lung injury. These results and workflow provides a reference point for future investigations, and can easily be applied in the analysis of other datasets.

iScience ◽  
2020 ◽  
Vol 23 (12) ◽  
pp. 101819
Author(s):  
Natalie Bordag ◽  
Valentina Biasin ◽  
Diana Schnoegl ◽  
Francesco Valzano ◽  
Katharina Jandl ◽  
...  

2021 ◽  
Vol 14 (3) ◽  
pp. 101016 ◽  
Author(s):  
Jim Abraham ◽  
Amy B. Heimberger ◽  
John Marshall ◽  
Elisabeth Heath ◽  
Joseph Drabick ◽  
...  

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 265.2-266
Author(s):  
M. T. Qiu ◽  
S. X. Zhang ◽  
J. Qiao ◽  
J. Q. Zhang ◽  
S. Song ◽  
...  

Background:Sjogren’s syndrome(pSS) is a chronic, progressive, and systematic autoimmune disease characterized by lymphocytic infiltration of exocrine glands 1 2. Sicca symptoms and abnormal fatigue are the main clinical presentation, but those symptoms are non-specific to patients, which lead to delayed diagnosis 1 3. The heterogeneous of clinical manifestation raise challenges regarding diagnosis and therapy in pSS, thus it’s necessary for us to sub-classify pSS.Objectives:To explore new biomarkers for diagnosis and subtypes of pSS based on Machine Learning Primary.Methods:All microarray raw datas (CEL files) were screened and downloaded from Gene Expression Omnibus (GEO). Meta-analysis to identify the consistent DEGs by MetaOmics. Weighted gene co-expression network analysis (WGCNA) was used to the modules related to SS for further analysis. Subclasses were computed using a consensus Non-negative Matrix Factorization (NMF) clustering method. Immune cell infiltration was used to evaluate the expression of immune cells and obtain various immune cell proportions from samples. P value < 0.05 were considered statistically significant. All the analyses were conducted under R environment (version 4.03).Results:A total of 3715 consistent DEGs were identified from the four datasets, including 1748 up-regulated and 1967 down-regulated genes. Tour meaningful modules, including yellow, turquoise, grey60 and bule, were identified (Figure 1A,1B). And 183 overlapping gene were screened from the DEGs and the Hub genes in the four modles for further analysis. We final divided pSS patients into three subtypes, of which yellow and turquoise in Sub1, grey60 in Sub2 and blue in Sub3. Sub1 and Sub3 were related to cell metabolism, while Sub2 had connection with virus infection (Figure 1C,1D). Infiltrated immune cells were also different among these three types (Figure 1E,1F).Conclusion:Patients with pSS could be classified into 3 subtypes, this classification might help for assessing prognosis and guiding precise treatment.References:[1]Ramos-Casals M, Brito-Zerón P, Sisó-Almirall A, et al. Primary Sjogren syndrome. BMJ (Clinical research ed) 2012;344:e3821. doi: 10.1136/bmj.e3821 [published Online First: 2012/06/16].[2]Brito-Zeron P, Baldini C, Bootsma H, et al. Sjogren syndrome. Nat Rev Dis Primers 2016;2:16047. doi: 10.1038/nrdp.2016.47 [published Online First: 2016/07/08].[3]Segal B, Bowman SJ, Fox PC, et al. Primary Sjogren’s Syndrome: health experiences and predictors of health quality among patients in the United States. Health Qual Life Outcomes 2009;7:46. doi: 10.1186/1477-7525-7-46 [published Online First: 2009/05/29].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


Author(s):  
Dhiraj J. Pangal ◽  
Guillaume Kugener ◽  
Shane Shahrestani ◽  
Frank Attenello ◽  
Gabriel Zada ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 210
Author(s):  
Yanyan Wang ◽  
Yun-Ling Tai ◽  
Derrick Zhao ◽  
Yuan Zhang ◽  
Junkai Yan ◽  
...  

Background and Aims: The disease progression of nonalcoholic fatty liver disease (NAFLD) from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) is driven by multiple factors. Berberine (BBR) is an ancient Chinese medicine and has various beneficial effects on metabolic diseases, including NAFLD/NASH. However, the underlying mechanisms remain incompletely understood due to the limitation of the NASH animal models used. Methods: A high-fat and high-fructose diet-induced mouse model of NAFLD, the best available preclinical NASH mouse model, was used. RNAseq, histological, and metabolic pathway analyses were used to identify the potential signaling pathways modulated by BBR. LC–MS was used to measure bile acid levels in the serum and liver. The real-time RT-PCR and Western blot analysis were used to validate the RNAseq data. Results: BBR not only significantly reduced hepatic lipid accumulation by modulating fatty acid synthesis and metabolism but also restored the bile acid homeostasis by targeting multiple pathways. In addition, BBR markedly inhibited inflammation by reducing immune cell infiltration and inhibition of neutrophil activation and inflammatory gene expression. Furthermore, BBR was able to inhibit hepatic fibrosis by modulating the expression of multiple genes involved in hepatic stellate cell activation and cholangiocyte proliferation. Consistent with our previous findings, BBR’s beneficial effects are linked with the downregulation of microRNA34a and long noncoding RNA H19, which are two important players in promoting NASH progression and liver fibrosis. Conclusion: BBR is a promising therapeutic agent for NASH by targeting multiple pathways. These results provide a strong foundation for a future clinical investigation.


Sign in / Sign up

Export Citation Format

Share Document