scholarly journals Male linked genomic regions determine sex in dioecious Amaranthus palmeri

2020 ◽  
Author(s):  
Cátia José Neves ◽  
Maor Matzrafi ◽  
Meik Thiele ◽  
Anne Lorant ◽  
Mohsen B. Mesgaran ◽  
...  

Dioecy, the separation of reproductive organs on different individuals, has evolved repeatedly in different plant families. Several evolutionary paths to dioecy have been suggested, but the mechanisms behind sex determination is not well understood. The diploid dioecious Amaranthus palmeri represents a well suited model system to study sex determination in plants. A. palmeri is one of the most troublesome weeds in the US, has successfully colonized other regions in the world and has evolved resistance to several herbicide classes. Despite the agricultural importance of the species, the genetic control and evolutionary state of dioecy in A. palmeri is currently unknown. Early cytogenetic experiments did not identify heteromorphic chromosomes. Here, we used whole genome sequencing of male and female pools from two independent populations to elucidate the genetic control of dioecy in A. palmeri. Read alignment to a close monoecious relative and allele frequency comparisons between male and female pools did not reveal significant sex linked genes. Consequently, we employed an alignment free k-mer comparison which enabled us to identify a large number of male specific k-mers. We assembled male specific contigs comprising a total of almost 2 Mb sequence, proposing a XY sex determination system in the species. Based on our findings we suggest an intermediate evolutionary state of dioecy in A. palmeri. Our findings give insight into the evolution of sex chromosomes in plants and may help to develop sustainable strategies for weed management.

2020 ◽  
Author(s):  
Cátia José Neves ◽  
Maor Matzrafi ◽  
Meik Thiele ◽  
Anne Lorant ◽  
Mohsen B Mesgaran ◽  
...  

Abstract Dioecy, the separation of reproductive organs on different individuals, has evolved repeatedly in different plant families. Several evolutionary paths to dioecy have been suggested, but the mechanisms behind sex determination is not well understood. The diploid dioecious Amaranthus palmeri represents a well suited model system to study sex determination in plants. Despite the agricultural importance of the species, the genetic control and evolutionary state of dioecy in A. palmeri is currently unknown. Early cytogenetic experiments did not identify heteromorphic chromosomes. Here, we used whole genome sequencing of male and female pools from two independent populations to elucidate the genetic control of dioecy in A. palmeri. Read alignment to a close monoecious relative and allele frequency comparisons between male and female pools did not reveal significant sex linked genes. Consequently, we employed an alignment free k-mer comparison which enabled us to identify a large number of male specific k-mers. We assembled male specific contigs comprising a total of almost 2 Mb sequence, proposing a XY sex determination system in the species. We were able to identify the potential Y chromosome in the A. palmeri draft genome sequence as 90 % of our male specific sequence aligned to a single scaffold. Based on our findings we suggest an intermediate evolutionary state of dioecy with a young Y chromosome in A. palmeri. Our findings give insight into the evolution of sex chromosomes in plants and may help to develop sustainable strategies for weed management.


1972 ◽  
Vol 14 (1) ◽  
pp. 175-180 ◽  
Author(s):  
D. N. Singh

A dioecious grass Sohnsia filifolia (Fourn.) Airy Shaw (Syn. Calamochloa filifolia Fourn.) from Mexico has been found to have 2n = 20 chromosomes in both male and female plants. The staminate plants have one chromosome much longer than the other chromosomes of the complement. One pistillate plant was found to have 30 chromosomes, among which the largest chromosome is quite similar to the largest component of the diploid male plant. The longest chromosome has been designated as the Y chromosome. An XY-mechanism of the Drosophilia type has been suggested for the sex determination system in this species. One small supernumerary chromosome was observed in the microsporocytes of some male plants, but was absent in roots.


2017 ◽  
Vol 4 (3) ◽  
pp. 160880 ◽  
Author(s):  
M. Pratlong ◽  
A. Haguenauer ◽  
S. Chenesseau ◽  
K.  Brener ◽  
G. Mitta ◽  
...  

Sexual reproduction is widespread among eukaryotes, and the sex-determining processes vary greatly among species. While genetic sex determination (GSD) has been intensively described in bilaterian species, no example has yet been recorded among non-bilaterians. However, the quasi-ubiquitous repartition of GSD among multicellular species suggests that similar evolutionary forces can promote this system, and that these forces could occur also in non-bilaterians. Studying sex determination across the range of Metazoan diversity is indeed important to understand better the evolution of this mechanism and its lability. We tested the existence of sex-linked genes in the gonochoric red coral ( Corallium rubrum , Cnidaria) using restriction site-associated DNA sequencing. We analysed 27 461 single nucleotide polymorphisms (SNPs) in 354 individuals from 12 populations including 53 that were morphologically sexed. We found a strong association between the allele frequencies of 472 SNPs and the sex of individuals, suggesting an XX/XY sex-determination system. This result was confirmed by the identification of 435 male-specific loci. An independent test confirmed that the amplification of these loci enabled us to identify males with absolute certainty. This is the first demonstration of a GSD system among non-bilaterian species and a new example of its convergence in multicellular eukaryotes.


2017 ◽  
Author(s):  
Mathias Scharmann ◽  
T. Ulmar Grafe ◽  
Faizah Metali ◽  
Alex Widmer

AbstractPlants with separate sexes (dioecy) represent a minority but dioecy has evolved multiple times independently in plants. Our understanding of sex determination systems in plants and of the ecological factors and molecular changes associated with the evolution of dioecy remain limited. Here, we study the sex-determination system in dioecious plants that lack heteromorphic sex chromosomes and are not amenable to controlled breeding: Nepenthes pitcher plants. We genotyped wild populations of flowering males and females of three Nepenthes taxa using ddRAD-seq, and sequenced a male inflorescence transcriptome. We developed a novel statistical tool (privacy rarefaction) to distinguish true sex-specificity from stochastic noise in high-throughput sequencing data. Our results support XY-systems in all three Nepenthes taxa and in Silene latifolia which was used as a positive control for its known XY-system. The male-specific region of the Y chromosome showed little conservation among the three Nepenthes taxa, except for the essential pollen development gene DYT1 which was also male-specific in additional taxa. Hence, this homomorphic XY sex-determination system likely has a unique origin older than the crown of the genus Nepenthes at c. 17.7 My. In addition to the characterisation of the previously unknown sex chromosomes of Nepenthes, our work contributes an innovative, highly sensitive statistical method to efficiently detect sex-specific genomic regions in wild populations in general.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2630
Author(s):  
Euna Jo ◽  
Seung-Jae Lee ◽  
Eunkyung Choi ◽  
Jinmu Kim ◽  
Jun-Hyuck Lee ◽  
...  

The brine shrimp Artemia has a ZW sex determination system with ZW chromosomes in females and ZZ chromosomes in males. Artemia has been considered a promising model organism for ZW sex-determining systems, but the genes involved in sex determination and differentiation of Artemia have not yet been identified. Here, we conducted transcriptome sequencing of female and male A. franciscana using PacBio Iso-Seq and Illumina RNA-Seq techniques to identify candidate sex determination genes. Among the 42,566 transcripts obtained from Iso-Seq, 23,514 were analyzed. Of these, 2065 (8.8%) were female specific, 2513 (10.7%) were male specific, and 18,936 (80.5%) were co-expressed in females and males. Based on GO enrichment analysis and expression values, we found 10 female-biased and 29 male-biased expressed genes, including DMRT1 and Sad genes showing male-biased expression. Our results showed that DMRT1 has three isoforms with five exons, while Sad has seven isoforms with 2–11 exons. The Sad gene is involved in ecdysteroid signaling related to molting and metamorphosis in arthropods. Further studies on ecdysteroid biosynthetic genes are needed to improve our understanding of Artemia sex determination. This study will provide a valuable resource for sex determination and differentiation studies on Artemia and other crustaceans with ZW systems.


Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 43
Author(s):  
Thitipong Panthum ◽  
Nararat Laopichienpong ◽  
Ekaphan Kraichak ◽  
Worapong Singchat ◽  
Dung Ho My Nguyen ◽  
...  

The snakeskin gourami (Trichopodus pectoralis) has a high meat yield and is one of the top five aquaculture freshwater fishes in Thailand. The species is not externally sexually dimorphic, and its sex determination system is unknown. Understanding the sex determination system of this species will contribute to its full-scale commercialization. In this study, a cytogenetic analysis did not reveal any between-sex differences in chromosomal patterns. However, we used genotyping-by-sequencing to identify 4 male-linked loci and 1 female-linked locus, indicating that the snakeskin gourami tends to exhibit an XX/XY sex determination system. However, we did not find any male-specific loci after filtering the loci for a ratio of 100:0 ratio of males:females. This suggests that the putative Y chromosome is young and that the sex determination region is cryptic. This approach provides solid information that can help identify the sex determination mechanism and potential sex determination regions in the snakeskin gourami, allowing further investigation of genetic improvements in the species.


AoB Plants ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Emma J Morgan ◽  
Christopher N Kaiser-Bunbury ◽  
Peter J Edwards ◽  
Mathias Scharmann ◽  
Alex Widmer ◽  
...  

Abstract Lodoicea maldivica (coco de mer) is a long-lived dioecious palm in which male and female plants are visually indistinguishable when immature, only becoming sexually dimorphic as adults, which in natural forest can take as much as 50 years. Most adult populations in the Seychelles exhibit biased sex ratios, but it is unknown whether this is due to different proportions of male and female plants being produced or to differential mortality. In this study, we developed sex-linked markers in Lodoicea using ddRAD sequencing, enabling us to reliably determine the gender of immature individuals. We screened 589 immature individuals to explore sex ratios across life stages in Lodoicea. The two sex-specific markers resulted in the amplification of male-specific bands (Lm123977 at 405 bp and Lm435135 at 130 bp). Our study of four sub-populations of Lodoicea on the islands of Praslin and Curieuse revealed that the two sexes were produced in approximately equal numbers, with no significant deviation from a 1:1 ratio before the adult stage. We conclude that sex in Lodoicea is genetically determined, suggesting that Lodoicea has a chromosomal sex determination system in which males are the heterogametic sex (XY) and females are homogametic (XX). We discuss the potential causes for observed biased sex ratios in adult populations, and the implications of our results for the life history, ecology and conservation management of Lodoicea.


2022 ◽  
Author(s):  
Ming Wen ◽  
Qiaowei Pan ◽  
Elodie Jouanno ◽  
Jerome Montfort ◽  
Margot Zahm ◽  
...  

The evolution of sex determination (SD) mechanisms in teleost fishes is amazingly dynamic, as reflected by the variety of different master sex-determining genes identified, even sometimes among closely related species. Pangasiids are a group of economically important catfishes in many South-Asian countries, but little is known about their sex determination system. Here, we generated novel genomic resources for 12 Pangasiid species and provided a first characterization of their SD system. Based on an Oxford Nanopore long-read chromosome-scale high quality genome assembly of the striped catfish Pangasianodon hypophthalmus, we identified a duplication of the anti-Mullerian hormone receptor type II gene (amhr2), which was further characterized as being sex-linked in males and expressed only in testicular samples. These first results point to a male-specific duplication on the Y chromosome (amhr2by) of the autosomal amhr2a. Sequence annotation revealed that the P. hypophthalmus Amhr2by is truncated in its N-terminal domain, lacking the cysteine-rich extracellular part of the receptor that is crucial for ligand binding, suggesting a potential route for its neofunctionalization. Short-read genome sequencing and reference-guided assembly of 11 additional Pangasiid species, along with sex-linkage studies, revealed that this truncated amhr2by duplication is also conserved as a male-specific gene in many Pangasiids. Reconstructions of the amhr2 phylogeny suggested that amhr2by arose from an ancient duplication / insertion event at the root of the Siluroidei radiation that is dated around 100 million years ago. Altogether these results bring multiple lines of evidence supporting that amhr2by is an ancient and conserved master sex-determining gene in Pangasiid catfishes, a finding that highlights the recurrent usage of the transforming growth factor β pathway in teleost sex determination and brings another empirical case towards the understanding of the dynamics or stability of sex determination systems.


Sign in / Sign up

Export Citation Format

Share Document